数学联邦政治世界观
超小超大

数学

1.康托定理‬

对任意集合X 都会存在一个基数比 X 更大的集合。

在X 是无穷集的情况,这揭露了超越无穷的世界。

2.Löwenheim–Skolem 定理

对任意一阶理论,如果其存在无穷模型,则存在任意基数的无穷模型,比如可数模型。

这揭露了那个超越无穷的世界只是一个海市蜃楼——在认知论上,在本体论上,则揭露了超穷世界是多么的超越认知,无法用语言指向,确定真实的不可数集。

3.Henkin 定理

对任意一阶理论,它是一致的当且仅当它存在模型。

Löwenheim–Skolem 定理是在一个超穷理论中,发现了一个一阶理论或许是不可数的自然模型,然后根据这个不可数的模型发现了该理论的可数模型。在这里先有不可数模型,再有可数模型,所以前者仍被认为是自然的,而后者属于生造的或限制的。

但 Henkin 定理并不需要额外假设模型存在,而是仅凭理论本身来构造一个完全切合理论的模型,这都不需要在一个超穷理论中证明,这样的模型甚至都可以在某种理想的计算机中被模拟出来(如利用理想的闭合时曲线作计算的理想计算机),可数模型就此夺回了它的自然感。

换言之,在本体论上超穷世界很可能并不存在,我们认知的超穷集合仅仅只是概念上的存在,在一个可数结构中形成的概念,而非真实的存在。亦或者反向思考,说明超穷世界在本体论上的超验深度越发深邃。

1.一阶理论:像 ZFC 这样的集合论都是一阶理论。

2.无穷模型:通俗的说,就像物理宇宙是物理理论的模型,集合论模型也被称作集宇宙。这个宇宙如果至少含有无穷个对象,则称其为无穷模型。

3.可数模型:仅含有可数个对象的宇宙,可数个是指≤ℵ₀个。

2.超穷理论:可以证明存在不可数集的足够使用的理论,下限如 KP+∃ℵ₁

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

喜美:朦胧梦境 连载中
喜美:朦胧梦境
湫日有棂
禁一切作者:湫日有棂【祈念文学社】从学生时期便认识的我们,为什么最后没能走到一起?一场意外把美幻曦带到副本世界,需要前往一个个世界攻略喜易言......
14.7万字3个月前
来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字2个月前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字2个月前
无限流——这个NPC是如此的独特 连载中
无限流——这个NPC是如此的独特
彼岸之舟*
作为无限流游戏中的固定NPC,白景欢在同一个故事里轮回过许多次,也遇见过许多人,可那些都不是他所期盼的。直到有一天,他觉醒了意识,也再次见到......
21.1万字2个月前
溺于夏海 连载中
溺于夏海
颜笙_17007168380330353
我从小就是不幸的人,我的不幸换来了他的出现,可阳光永远不会在我身上停留太久,我会追逐阳光,可每次只差一步
1.8万字5天前
她们真的是救世主嘛? 连载中
她们真的是救世主嘛?
汽see
在这个鬼怪与人类的世界里,六个女孩通过解开一个又一个的灵异事件,去探寻星清学院的真相,她们会发生什么样的事呢…不过,她们真的是救世主吗?无c......
13.5万字5天前