数学联邦政治世界观
超小超大

类域论的【类】核心数学之一。

§4.2 代数数论的核心 · 99 ·

定义 4.17 称数域的理想类群的阶数为该数域的类数(class mumber). □

例4.18 令K=ℚ(√–26). 在§4.3 中我们将证明 K 的类数等于6.令α=(3.1+√–26),c=(2,√–26),则

α³=(1+√–26),c²=(2),

于是

ℤ/3ℤ ⨁ ℤ/2ℤ → CI(ℚ(√–26));

(m,n)↦(α 的类)ᵐ(c的类)ⁿ.

为了叙述定理 4.21,有必要先讲实素点和复素点的定义.

定义4.19设 K 为数域.

(1)K 的实素点是指由K到ℝ的一个域同态.

(2)K的复素点是指由K到ℂ的域同态σ,并使得 σ(K)⊂ ℝ 不成立. 我们约定这样的 σ

──

与其共轭 ˉσ:K → ℂ:x ↦ σ(x)为同一个复素点.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

遇到你们,不再空虚 连载中
遇到你们,不再空虚
蓝猫爱吃小无鱼
在我将要“死亡”之时,是你们让我让我获得生的希望……真的吗?……(啊啊啊啊啊写的太烂了!!!)
0.8万字10个月前
地缚少年:第八大灵异现象 连载中
地缚少年:第八大灵异现象
悦音幻
这里是ALL女主文,主花子君和原创女主,想看的就进来吧,比较甜,花宁粉勿进。
1.6万字9个月前
我将不断追寻精神的本真:两个人的孤独方程 连载中
我将不断追寻精神的本真:两个人的孤独方程
*夜半太阳*
有关于维持时空稳定的失落之石遭到破坏使时空重组,发生在混沌世界的一个小小故事
0.5万字9个月前
胡说,她才不是坏女人 连载中
胡说,她才不是坏女人
杜光连
江思雨从混沌中醒来就没有了记忆,是333带她来到了小世界中。系统333说只要让他的主人拥有了情欲,那江思雨就会恢复记忆,离开混沌,找回自由,......
7.2万字8个月前
素圈Z—12 连载中
素圈Z—12
沈归墨
特工001与实验体Z-12
3.2万字6个月前
嘘!怪谈在你身后 连载中
嘘!怪谈在你身后
第九页相思
【群像/无CP】若说这世界是虚假的呢?江游缘只是一名生活在黑暗中的高中生,高考时意外穿进一个名为“怪谈”的世界,经过重重困难,他绑定了系统,......
2.6万字3个月前