数学联邦政治世界观
超小超大

类域论的【类】核心数学之一。

§4.2 代数数论的核心 · 99 ·

定义 4.17 称数域的理想类群的阶数为该数域的类数(class mumber). □

例4.18 令K=ℚ(√–26). 在§4.3 中我们将证明 K 的类数等于6.令α=(3.1+√–26),c=(2,√–26),则

α³=(1+√–26),c²=(2),

于是

ℤ/3ℤ ⨁ ℤ/2ℤ → CI(ℚ(√–26));

(m,n)↦(α 的类)ᵐ(c的类)ⁿ.

为了叙述定理 4.21,有必要先讲实素点和复素点的定义.

定义4.19设 K 为数域.

(1)K 的实素点是指由K到ℝ的一个域同态.

(2)K的复素点是指由K到ℂ的域同态σ,并使得 σ(K)⊂ ℝ 不成立. 我们约定这样的 σ

──

与其共轭 ˉσ:K → ℂ:x ↦ σ(x)为同一个复素点.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字6个月前
女寝海龟汤实录 连载中
女寝海龟汤实录
养老院里劈过腿
每日一则海龟汤。女寝444成员:橙子、花花、佳琪、小青档案记录&管理人员:~养老院里劈过腿~
1.0万字6个月前
夏芊月与魔法传说 连载中
夏芊月与魔法传说
猫忆蝶
讲的是一位少女,通过自己的努力,慢慢变强的故事
0.7万字3个月前
亓妄 连载中
亓妄
十云逝
亓妄说过,他只爱沈晚烟,他只信余倞和余焚。沈晚烟和他的母亲,是亓妄最后的防线;可在不久后,这最后的防线也断裂了。
1.3万字2个月前
我将不断追寻精神的本真:两个人的孤独方程 连载中
我将不断追寻精神的本真:两个人的孤独方程
*夜半太阳*
有关于维持时空稳定的失落之石遭到破坏使时空重组,发生在混沌世界的一个小小故事
0.5万字2个月前
慕容归零 连载中
慕容归零
丽夏
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
13.5万字4周前