数学联邦政治世界观
超小超大

欧拉函数

可以使用 中国剩余定理。对于互素的正整数 α,b ,可以直接验证环同态 f:Z/αbZ → Z/αZ × Z/bZ

f(x mod αb):=(x mod α,x mod b)

的逆映射是g(y mod α,z mod b):=ybn+zαm mod αb,这里 m,n 是整数使得 αm+bn=1 ( Bezout等式保证α,b 互素时,这样 m,n 一定存在),因此 f 是环同构,于是我们有Z/αbZ≅Z/αZ × Z/bZ。特别地,它们的乘法群也同构 Z/αbZ)× ≅ (Z/αZ)× × (Z/bZ)× 。考虑等式两边集合的基数,我们就有 ф(αb)=ф(α)ф(b) 。

另一种方法是使用算术函数的 Dirichlet卷积。对于正整数 n ,考虑集合 {1,. . .,n} 的拆分Ad={x∈{1,2,. . .,n}:gcd(x,n)=d},d│n。从定义可知, Ad 有 ф(n/d) 个元素。比较基数我们有

n=∑ф(n/d)

d|n

这说明id=1 * ф ,这里 id(x):=x 是恒等函数, 1(x):=1 是恒为 1 的函数, * 表示 Dirichlet卷积

(f * g)(n):=∑f(d)g(n/d)

d|n

常数函数1 的Dirichlet卷积逆是 Mobius函数 μ ,因此我们有 ф=μ * id 。由于 μ 和 id 都是积性以及两个积性函数的Dirichlet卷积还是积性,我们断定 ф 也是积性。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

茈椛 连载中
茈椛
凌苪玥
这是一个为了修为连人性都可以丢去的世界,但女主不清楚,在某天她得知了自己椛人的身份,她乐观应对,故事由此展开
0.3万字8个月前
杂篇论(随笔) 连载中
杂篇论(随笔)
又是一年冬_
时不时的构思,更新全看心情,是的,我就是这么懒(划掉)随意~
0.8万字5个月前
王楚钦:无人知晓的我 连载中
王楚钦:无人知晓的我
吉林的风
清冷记者×天才少年“我们注定不能在一起,我想要无人知晓,而你却家喻户晓”
2.3万字5个月前
世界都要穿成筛子了 连载中
世界都要穿成筛子了
一步至岸
星际时代,基因强化伴随而来的是基因异变的问题,为了解决问题,传送平行世界的人来到星际,研究星际时代前的人与星际时代的人基因不同点,以此解决问......
0.7万字2个月前
末世清光 连载中
末世清光
宋你一颗晓鑫鑫
末世?重生?筛选?末世的背后究竟隐藏了什么秘密?
2.4万字3周前
弑神浮云录 连载中
弑神浮云录
看到结局泪目
浮云公会会长能不能给我当几天?
5.8万字1周前