数学联邦政治世界观
超小超大

数学理论(五)

素数分布之道(原创彭秋年)

摘要:㈠创建能量参照法生成素数分布新论;㈡论各种奇素数组合的分布;㈢论偶数u的素数分解对的分布;㈣论m次函数中的素数分布;㈤论梅森素数的分布.

关键词:能量参照法、素数分布新论.

[本文节选㈠、㈣]

㈠、创建能量参照法生成素数分布新论.

首先陈述素数定理:如果以q表示自然数s以内的素数数量,则q=s/㏑s.

(s较小时,用㏑s-1.08代替㏑s计算更精确)

当s足够大时,显然满足:

(s/㏑s)/(1/㏑3+1/㏑4…+1/㏑s)→1.

如果集合X是集合N(N=全体自然数)的子集.

且令:s以内集合X中大于2的元素依次是x₁,x₂…xₙ;同时定义s以内集合X中元素的能量和为e=1/㏑x₁+1/㏑x₂…+1/㏑xₙ.

则有:s以内集合N中元素的能量和e、素数数量q都趋近或等于s/㏑s,即q=e=s/㏑s.

以集合X={x|x=3a+1,(a∈N)}为例展开论述.

且令:集合X、N中与pᵢ互素的元素的分布比例分别为yᵢ、zᵢ.

(i∈N,p₀=2,i>0时,pᵢ表示第i个奇素数)

则有:i=1时,y₁=1,z₁=2/3;

i≠1时,yᵢ=zᵢ=(pᵢ-1)/pᵢ;

集合X、N中与p₀p₁…pᵢ互素的元素的分布比例分别为y₀y₁…yᵢ、z₀z₁…zᵢ.

且令:rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:r₀=1;i>0时,rᵢ=1/(2/3)=3/2.

分析:s以内集合X中的元素相对于集合N中的元素,它们成为素数的能力强度其参照值是r=3/2;简述为集合X存在参照常数r=3/2.

且令:s以内集合X中元素的能量和为e.

则有:e=s/(3㏑s).

分析:s以内集合X中的素数数量q等于能量和e与参照常数r之积,即q=er=s/(2㏑s).

以此类推

且令:P={全体素数};

X={x|x=pa+y,(a∈N)}.

(p∈P,y=1,2…p-1)

则有:p、y确定时,s以内集合X中素数数量分布的计算公式是q=er=s/[(p-1)㏑s].

且令:P₀=P∩X.

则有:s以内集合P₀、P中元素数量分布之比为1/(p-1).

定义:使用能量和e与参照值r的概念对素数分布进行分析探讨的方法称为能量参照法.

素数定理与能量参照法结合为素数分布新论如下:

如果集合X是集合N(N=全体自然数)的子集;集合X中与pᵢ、p₀p₁…pᵢ互素的元素的分布比例分别为yᵢ、y₀y₁…yᵢ. (i∈N)

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

若存在n使得:i>n,所有的rᵢ都趋近或等于r;则称集合X存在参照常数r.

且令:s以内集合X中元素的能量和为e,素数元素的数量为q. (s足够大)

则有:q=er.

㈣、论m次函数中的素数分布.

①、论一次函数(等差数列)中的素数分布.

以集合X={x|x=10a+1,(a∈N)}为例展开论述.

且令:集合X中与pᵢ互素的元素的分布比例为yᵢ;zᵢ=(pᵢ-1)/pᵢ. (i∈N)

则有:10的素因数为p₀=2、p₂=5,对应y₀=y₂=1;i≠0、2时,yᵢ=zᵢ=(pᵢ-1)/pᵢ;

且令:rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:i>1时,rᵢ=1/[(1/2)(4/5)]=5/2.

即,集合X存在参照常数r=5/2.

简述:10以内有4个正整数(1,3,7,9)与10互素,对应集合X存在参照常数r=10/4=5/2.

s以内集合X中元素的能量和为e=s/(10㏑s).

因此,s以内集合X中素数数量分布的计算公式是q=er=s/(4㏑s).

(s较小时,用㏑s-1.08代替㏑s计算)

以此类推

且令:X={x|x=ma+n,(a∈N)};

m以内有u个正整数与m互素.

(m,n为互素的正整数,m>n)

则有:集合X存在参照常数r=m/u;s以内集合X中元素的能量和为e=s/(m㏑s).

因此,s以内集合X中素数数量分布的计算公式是q=er=s/(u㏑s).

(s较小时,用㏑s-1.08代替㏑s计算)

②、论二次函数中的素数分布.

以集合X={x|x=a²+1,(a∈N)}为例展开论述.

且令:集合X中与pᵢ互素的元素的分布比例为yᵢ. (i∈N)

则有:y₀=1/2;pᵢ=4c+1时,yᵢ=(pᵢ-2)/pᵢ;pᵢ≠2、4c+1时,yᵢ=1. (c∈N)

又,4以内共有2个正整数(1,3)与4互素.

因此,s以内有1/2的pᵢ=4c+1.

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:rᵢ→1.37…

即,集合X存在参照常数r=1.37.

s以内集合X中元素的能量和为e=√s/㏑s.

因此,s以内集合X中素数数量分布的计算公式是q=er=1.37√s/㏑s.

(s较小时,用㏑s-1.08代替㏑s计算)

以此类推

且令:A={x|x=a²+n,(a∈N)};

B={x|x=a²+a+n,(a∈N)};

C={x|x=(a²+a)/2+n,(a∈N)}.(n∈Z)

则有:n确定时,s以内集合A、B、C中素数数量分布的计算公式都是q=er=rₙk/㏑s.

[k表示s以内集合X(X=A,B,C)中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算]

集合A的参照常数rₙ的计算方法如下:

1、n=-b²(b∈N)时,集合A的表达式能够进行因式分解,rₙ=0.

2、n≠-b²(b∈N)时,令|4n|以内存在2u个正整数与|4n|互素,集合A的正元素中包含的与|4n|互素的素因数除以|4n|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|4n|时,令tᵢ=1;

当pᵢ=|4n|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|4n|且pᵢ≠|4n|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|4n|c+bᵥ;

i足够大时,rₙ=t₀t₁…tᵢ=常数.

(i∈N,c∈N,v=1,2…u)

另外,如果m=nb²(b∈N+);

b不存在与|4n|互素的奇素因数,则rₘ=rₙ;

b存在与|4n|互素的奇素因数d₁,d₂…dₓ,

当dᵢ=|4n|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|4n|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

例如:

n=7时,|4n|=28,28以内存在12个正整数与28互素,集合A的正元素中包含的与28互素的素因数除以28所得互异的余数(有且仅有6个)组成序列

B={b₁,b₂…b₆}={1,9,11,15,23,25};

28的素因数为p₀=2、p₃=7,令t₀=t₃=1;

当pᵢ=28c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ≠2、7、28c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1).

(i、c∈N,v=1,2…6)

又,s以内有1/2的pᵢ=28c+bᵥ;

经计算,i>167时,r₇=t₀t₁…tᵢ=1.96…

因此,集合A={x|x=a²+7,(a∈N)}的参照常数为r₇=1.96.

经粗略计算,r₁=r₄=1.37,r₂=r₈=0.71,

r₃=1.11,r₅=0.52,r₆=0.71,r₇=1.96,

r₀=r₋₁=r₋₄=0,r₋₂=r₋₈=1.89,r₋₃=1.38,

r₋₅=1.78,r₋₆=1.04,r₋₇=0.75.

(连续足够多个rₙ的均值为1)

集合B的参照常数rₙ的计算方法如下:

1、n为偶数时,集合B中的元素均为偶数,rₙ=0.

2、n为奇数时,令|4n-1|以内存在2u个正整数与|4n-1|互素,集合B的正元素中包含的与|4n-1|互素的素因数除以|4n-1|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|4n-1|时,令tᵢ=1;

当pᵢ=|4n-1|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|4n-1|且pᵢ≠|4n-1|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|4n-1|c+bᵥ;

i足够大时,rₙ=2t₁t₂…tᵢ=常数.

(i∈N+,c∈N,v=1,2…u)

另外,如果|4m-1|=|4n-1|b²(b为正奇数);

b不存在与|4n-1|互素的奇素因数,则rₘ=rₙ;

b存在与|4n-1|互素的奇素因数d₁,d₂…dₓ,

当dᵢ=|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

经粗略计算,r₁=1.56,r₀=r₋₂=r₂=0,

r₃=1.01,r₋₁=3.43,r₋₃=1.61.

(连续足够多个rₙ的均值为1)

集合C的参照常数rₙ的计算方法如下:

1、n=-(b²+b)/2(b∈N)时,集合C的表达式偶数项与奇数项能够分开进行因式分解,rₙ=0.

2、n≠-(b²+b)/2(b∈N)时,令|8n-1|以内存在2u个正整数与|8n-1|互素,集合C的正元素中包含的与|8n-1|互素的素因数除以|8n-1|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|8n-1|时,令tᵢ=1;

当pᵢ=|8n-1|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|8n-1|且pᵢ≠|8n-1|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|8n-1|c+bᵥ;

i足够大时,rₙ=t₁t₂…tᵢ=常数.

(i∈N+,c∈N,v=1,2…u)

另外,如果|8m-1|=|8n-1|b²(b∈N+);

b不存在与|8n-1|互素的奇素因数,则rₘ=rₙ;

b存在与|8n-1|互素的奇素因数d₁,d₂…dₓ,当dᵢ=|8n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|8n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

经粗略计算,r₁=1.98,r₀=r₋₁=0,

r₋₂=2.35,r₂=1.24.

(连续足够多个rₙ的均值为1)

综合而论

s以内集合X={x|x=k₂a²+k₁a+n,(a∈N}中素数数量分布的计算公式是q=er=rₙk/㏑s. (k₂∈N+,k₁∈Z,n∈Z,k表示s以内集合X中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算)

集合X的参照常数rₙ的计算方法如下:

1、集合X的表达式能够进行因式分解或者所有元素都被某个素数整除时(例如k₁、k₂为奇数,n为偶数时,所有元素都被2整除),rₙ=0.

2、当集合X不符合第1条所述;k₁为偶数时,令A={x|x=a²+k₂n-k₁²/4,(a∈N)};

k₁、k₂、n均为奇数时,令B={x|x=a²+a+k₂n-(k₁²-1)/4,(a∈N)};

k₁为奇数、k₂为偶数时,令C={x|x=(a²+a)/2+k₂n/2-(k₁²-1)/8,(a∈N)};

当k₂=2ᵐ(m∈N)时,令b=1;当k₂存在奇素因数d₁,d₂…dₓ,dᵢ(i=1,2…x)整除k₁时,令bᵢ=dᵢ/(dᵢ-1),dᵢ与k₁互素时,令bᵢ=(dᵢ-1)/(dᵢ-2),令b=b₁b₂…bₓ;

则rₙ等于集合X对应的集合(A,B,C三者之一)的参照常数乘以b.

(k₁,k₂不变,连续足够多个rₙ的均值为1)

③、论m(m∈N+)次函数中的素数分布.

且令:X={x|x=kₘaᵐ+kₘ₋₁aᵐ⁻¹…+k₁a+n,(a∈N)}. (m、kₘ∈N+,n、k₁…kₘ₋₁∈Z)

则有:s以内集合X中素数数量分布的计算公式是q=er=rₙk/㏑s.

(k表示s以内集合X中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算)

集合X的参照常数rₙ的计算方法如下:

1、集合X的表达式能够进行因式分解或者所有元素都被某个素数整除时,rₙ=0;否则,按2、3条计算,rₙ>0,集合X中素数无穷多.

2、集合X中的正元素除以pᵢ所得余数呈现周期性分布规律,周期长度为pᵢ;每个素数都对应一个余数周期,这些周期内最多有m个0,最少则无0,平均为一个0;令pᵢ对应的余数周期中有dᵢ个元素与pᵢ互素;令tᵢ=dᵢ/(pᵢ-1);i足够大时,rₙ=t₀t₁…tᵢ=常数. (i∈N)

3、第2条是关于集合X的rₙ值的直接计算法,前面计算表达式为二次函数的集合X的rₙ值用的是间接计算法,关于计算表达式为二次以上函数的集合X的rₙ值的间接计算法尚待探讨.

(m,k₁…kₘ不变,连续足够多个rₙ的均值为1)

另外,当集合X的表达式中某些项的系数不为整数时,若集合X中的正元素分布符合上述第2条,则集合X的rₙ值计算方法同上.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字2个月前
原创终极一家之爱会不会痛 连载中
原创终极一家之爱会不会痛
旭梦如夏
我是敏敏爱博君禁止辱骂禁止上升真人,原创不易,重新写,夏美崩溃失去哥哥是否接受令团长的喜欢,夏美当盟主,孙权很爱夏美这个大姐,还有阿香,周瑜......
9.0万字2个月前
残梦遗记 连载中
残梦遗记
时间独角兽的小号吖
原创作品,禁止抄袭,违反必究!!!作者原名:时间独角兽(墨怨)简介正文:——哥哥,我做了一场梦……像碎片一样的记忆涌入我的脑海,——是谁在呼......
2.1万字2个月前
琉璃仙途 连载中
琉璃仙途
清辰明月
观影忆往昔,未来载无限。“世界万灵皆具善恶两面,心灵本就复杂变幻莫测,难以一言以蔽之,怎能轻易定夺善恶!”——琉璃“嫉妒什么的最讨厌了,别人......
6.9万字1个月前
三人行之二:金色学院的宝藏 连载中
三人行之二:金色学院的宝藏
璃月非李月
三人行系列2这一本内容逐渐魔幻作者非常需要评论!!看过的朋友们请留下足迹!!不拒绝吐槽月学院内部的规则,究竟有什么意图❓传说中的宝藏,和规则......
4.0万字6天前
永恒探险记:冰霜再降 连载中
永恒探险记:冰霜再降
百里沧陷
几位外貌15岁而真实年龄确实3000多岁的长生者,来到了星落学院,遇到了一个蓝衣少女,而少女貌似也是和他们一样的长生者
2.2万字5天前