数学联邦政治世界观
超小超大

希尔伯特(三)

好了,现在最有趣的地方来了。这时候如果我们想要对这个骰子做一个观察,我们怎么办呢?我们需要让这个筛子落地。比如说我们现在拿着一个三维的笛卡尔坐标系,如果我们想要观察骰子的一面,那么很简单,我们把x-y屏幕端平,让骰子落到上面就可以了:骰子必定会有一面向上,并且哪一面向上,决定于它在落地的瞬间的方向:它虽然是概率性的,但是那个面与地面的夹角最小,它就更可能会以这个面落地 – 于是我们就可以观察这个骰子到底有几点。然而,我们的观察有很多形式,如果我们不关心这个骰子哪一面向下,而是观察它哪一条棱向下,怎么办?我们只需要报我们的坐标系旋转45°,比如说以水平的y轴向下,而另外两个屏幕个呈45°角。那么骰子落地时,就会有一条棱向上。我们就可以观察那一条棱 – 当然此时就意味着两个面向上了。同理,我们也可以观察一个角:我们只需要相应地旋转我们的坐标系就可以了。

因而,最终我们看到骰子确定的状态 – 是一个面、一条棱、还是一个角?- 完全取决于我们用这个三维坐标系以何种角度来“接”这个骰子。我们想要看一个面,我们就以一个平面来接它;我们想看一条棱,我们就用一条棱来接它;我们想看一个角,我们就用原点来接它。最终的结果,当然有概率性,但是概率却是由这个骰子落地时的角度决定的。我们观察到的一条确定的棱,可以是两个面的叠加,我们观察到的确定的角,可以是三条棱、或三个面的叠加。

在量子系统中,如果我们想观察位置,就要向位置本征态投影,如果想观察动量,就要向动量本征态投影,如果想观察能量,就向能量本征态投影。而观察的概率取决于态矢量的角度。我们观察到的确定的位置,可以是多个动量的叠加;我们观察到的确定的动量,可以是多个位置的叠加,如此等等,这和骰子的行为是何等相似!

所以说,量子态就是一个希尔伯特空间中的骰子;它按照薛定谔方程的确定演化,就是这个骰子在希尔伯特空间中的可预测旋转;它的观察过程,就是我们选取了一个角度来“接”这个骰子落地 – 不同的可观测量就是不同的角度,概率性就是骰子落地时的角度。

这么看来,波函数的叠加和坍缩,也并不神秘,不是吗?

神秘的是,这个骰子究竟是何种含义?

参考文献:

1. 事实上,复数给量子力学的形式理论带来了很多有趣的现象。有一种说法,就是说量子力学其实是一种最简单的复数域中的概率论 – 它把实数概率推广到复数中去了。这是一种很有意思的观点,但是我并不想从复数讲起。因而在本文的全文当中,我都忽略掉复数的性质,而只谈论实数波函数。但是你需要知道,这些谈论不是严谨的理论探讨,而是趣味性的科普探讨。

2. 我们已经知道,欧氏空间是这样一种集合,首先,它其间的所有矢量均满足可叠加性,严格讲是线性可叠加性。满足线性发展的空间我们可以称之为线性空间。在它其中定义了长度之后,这个集合可以称作巴拿赫空间(Banach space)。然后在在其中定义了角度,这个集合就是希尔伯特空间。而我们熟知的欧氏空间是一种特殊的希尔伯特空间:它定义在实数域中,并且有三个维度 。

3. 严格说,应该是它的实部是个正弦波,整个复函数波是在复空间旋转的复数。这一点,我们在本文加以简化,只用实部来表示。

4. 德布罗意波的一个最基本关系就是,粒子的动量与他的波长成反比,确定的波长就意味着确定的动量。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

涧春 连载中
涧春
五香瓜子仁
[已签约]一场让所有人匪夷所思的穿书,沐季珠以为的穿书,其实是夜渊一千两百年来的等待。
15.5万字2个月前
冷宫九公主要翻身 连载中
冷宫九公主要翻身
某家女主
因为不想弄这么多任务,所以就直接只有旁白仿炮灰闺女的生存方式
60.9万字2个月前
蘤 连载中
繁梦hfrm
本片之前的名字《花》但由于一直打不出来,所以已《蘤》命名本篇文章是以一个穿梭在多重空间里的组织这个组织坐落在一道空间裂缝里名叫溟翼的神秘组织......
1.5万字2个月前
缤纷多彩小故事 连载中
缤纷多彩小故事
风雪轮
多个故事,应该是很简洁的一些故事,一个故事开头结尾结束的很快
3.9万字2个月前
少女魔法师 连载中
少女魔法师
朴贝
四个生活在魔法城的魔法少女保护世界的故事
3.1万字2个月前
路西法今天堕天了吗? 连载中
路西法今天堕天了吗?
加木男
上帝不容亵渎,拥护他的前行。
3.4万字2个月前