数学联邦政治世界观
超小超大

逻辑学

为审慎起见,答案自带数学证明:

1)设x为任意个体变元,P(x)与Q(x)分别为定义x的命题,则当P(x)与Q(x)不等价时,有

(∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

即概念的定义不等价必导致推理结论不一致,因而矛盾律必须被遵守.

证明(李,2023):设H为表征变元为重言式的谓词,则由蕴含的传递性及充分条件与必要条件的关系,有

(∀x)P(x)⇎Q(x)

⇒ (∀x)¬H(P(x)↔Q(x))

⇒ (∀x)Q(x)↛P(x)

⇒ (∀x)¬(P(x)↔Q(x))

⇒ (∀x)(Q(x)⊬P(x))

⇒ (∀x)(Q(x)⊬P(x))→Q(x) ⊬ S(x)

⇒ (∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

Q.E.D.

2)设S为表征变元不服从矛盾律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违矛盾律则世无假话或世无真话.

证明(李, 2023):设Z为表征变元满足必有一假的二元谓词,Ç为表征变元同真或同假的二元谓词,则

(∀x)S(P(x), ¬P(x))

⇒ (∀x)¬Z(P(x), ¬P(x))

⇒ (∀x)Ç(P(x), ¬P(x))

⇒ (∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

Q.E.D.

3) 设S⁺为表征变元不服从排中律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违排中律则世无假话或世无真话.

证明(李,2019):设Z⁺为表征变元满足必有一真的二元谓词,Ç⁺为表征变元同真或同假的二元谓词,则

(∀x)S⁺(P(x), ¬P(x))

⇒ (∀x)¬Z⁺(P(x), ¬P(x))

⇒ (∀x)Ç⁺(P(x), ¬P(x))

⇒ (∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x))

Q.E.D.

在逻辑问题上,不建议以哲学固有的半散文-半杂文语言描述或解释逻辑规则,否则极易造成逻辑上的疏漏。千百年来,哲学之所以一错再错,就是因为哲学热衷于以洋洋洒洒的半散文-半杂文语言在本需高度审慎的论域比划来比划去的处理涉逻辑问题,其结果势必大概率比划出逻辑上的纰漏而全然不觉。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字3个月前
一个誓言走一世 连载中
一个誓言走一世
情终须缘
复合√回家√蝶眸殉情黑化……(反正不虐,很甜)一笑倾国,再笑倾城。
10.1万字3个月前
穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字3个月前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字2个月前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字2个月前
同门七仙子 连载中
同门七仙子
仙姬吖
仙界中,师父最疼爱的,师哥师姐最宠爱的,古灵精怪中透露出可爱调皮的小师妹洛瑶,在仙界中十分受宠,却遭遇历劫,法力尽失,但在凡间识得心上人,却......
0.6万字2周前