数学联邦政治世界观
超小超大

伪证

许多悖论都可以视为不加限制地使用逻辑, 得到对矛盾的伪证.

1. 小试牛刀: 说谎者悖论

"这句话为假." 这句话的存在本身就能导出矛盾.

• 如果这句话是真的, 那么根据它的内容, 它是假的.

• 如果这句话是假的, 那么它必须是真的.

因此这句话既真又假, 矛盾.

2. 强说谎者悖论

对说谎者悖论的一个自然的补丁是认为自然语言中有些句子是无意义的. "我在说谎"这句话就是无意义的. 但这个补丁只是把自然语言的真值扩展到了三值: 真, 假, 无意义. 它完全没有解决这个悖论. 考虑 "这句话为假或者无意义".

• 如果这句话为真, 那么它为假或无意义.

• 如果这句话为假或无意义, 那么它为真.

因此这句话既是真的, 也或者为假, 或者无意义, 矛盾.

3. Curry 悖论

Curry 悖论似乎允许我们证明任何命题. 下面我们试着证明荒谬的0=1.

考虑这句话: "如果这句话是真的, 那么0=1." 记之为 k, 于是 k 所说的就是:如果 k 为真, 那么 0=1.

1. 如果 k 为真, 那么平凡地, k 为真.

2. 在 1 中展开 k 的定义得到, 如果 k 为真, 那么如果 k 为真, 那么 0=1.

3. 综合 1, 2 得到:如果 k 为真, 那么 0=1.

4. 但 3 就是 k! 所以 k 是真的.

5. 综合 3, 4 得到:0=1.

4. Tarski 真不可定义性

The best part of this unified scheme is that it shows that there are really no paradoxes. There are limitations. Paradoxes are ways of showing that if you permit one to violate a limitation, then you will get an inconsistent systems.[1]

将上面的悖论形式化到一阶算术, 就能得到著名的 Tarski 定理. 固定一个算术公式到自然数的Gödel 编码 φ(x)↦⌜φ(x)⌝.

Theorem. (Tarski) 集合 {n∈ℕ│n } 在算术语言中是不可定义的.

Proof. 假设它被公式 T(x) 定义. 固定一个函数 D:ℕ → ℕ, 使得对任意公式 φ(x),D(⌜φ(x)⌝)=⌜φ(⌜φ(x)⌝)⌝. 显然存在这样的递归函数, 因此它是可表示的.

定义公式G(x) 为 ¬T(D(x)), 则公式 G(⌜G(x)⌝) 便是"我在说谎":G(⌜(G(x)⌝) ⇔ ¬T(D(⌜G(x)⌝)) ⇔ ¬G(⌜G(x)⌝)矛盾. □

哲学上, 这一切悖论说的都是语言不能谈论自身的真值, 不然就会导致悖论. 读者可以在 Yanofsky[1]的文章里看到更多有趣的例子.

参考:1. A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points https://arxiv.org/abs/math/0305282

2. A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points https://arxiv.org/abs/math/0305282

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

快穿:开个阴魂店 连载中
快穿:开个阴魂店
人类百分百
来此店的亡魂必然都有怨恨。说出你的故事,并提出要求,“我”会帮你实现。故事虚构,封面素材来源网络
0.7万字5个月前
零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字5个月前
琉璃仙途 连载中
琉璃仙途
清辰明月
观影忆往昔,未来载无限。“世界万灵皆具善恶两面,心灵本就复杂变幻莫测,难以一言以蔽之,怎能轻易定夺善恶!”——琉璃“嫉妒什么的最讨厌了,别人......
6.9万字4个月前
只为一个明天的人们 连载中
只为一个明天的人们
墨雨岚溪
在一段荒唐而遥远的历史中,西煌帝国统治着几乎整个大陆。表面上,其疆域广袤无垠,城镇繁华喧嚣,商队往来不绝,欢声笑语不断。然而,实则内部腐败不......
0.5万字3个月前
龙卷风之后 连载中
龙卷风之后
飞向天宏
南海的某夏天,一场突如其来的龙卷风,这是五千罕见的超强风,它所之处,一片狼藉……
12.1万字3个月前
爱的破局计划 连载中
爱的破局计划
且听雨吟
《爱的破局计划》是新人气作者的作品,讲述了宋逸思意外成为穿越者,攻略他的竹马时京墨,成功了有10亿奖金,失败了就会消失在这个世界上,宋逸思失......
2.8万字2个月前