数学联邦政治世界观
超小超大

数学(二)

基数

基数是描述集合大小的数,自然数的基数就是它本身,无穷序数的基数对应阿列夫数。

[ω, ω₁)区间内的序数的基数都是ℵ₀,ω₁={On(α)∧α<ω}。

ω₁是一序数,它是最小的也是第一个不可数序数,严格强于区间[ω,ω₁)中的所有序数。

ω₁是所有可数序数的上确界,是所有可数序数永远无法抵达的极限。

对于任一α与β,如果α<β,则ω_α<ω_β,而这会得到一个序数的线序性关系,直接得到基数的线序性关系。

此时,序数按从小到大的关系排列:ω, ω₁, ……;根据这个序列可以得到ℵ₀, ℵ₁, ……的基数序列。

根据GCH,我们有ℵ_α+1 = 2^ℵ_α;而GCH如果不成立,则ℵ_α+1 与2^ℵ_α之间的关系无法确定。

序数

后继定义:x⁺=x⋃{x}

自然数定义:1、0是自然数;2、若n是自然数,则n⁺也是自然数;所有自然数都是1和2得到的。

自然数有无穷多个,但是我们可以规定一个ω,令它为无论所有自然数进行任何集论运算都无法抵达的极限。

ω是所有自然数的上确界,但是我们无法通过自然数公理得到ω。

因此,我们需要对其进行定义:所有自然数的集合是ω,它的势是ℵ₀。

对于ω,我们有:0∈ω∧∀y∈ω(y⁺∈ω)和∀x∈ω(x=0∨∃y∈ω(x=y⁺))

根据上述公式,我们知道ω对后继是封闭的,因此我们说ω是一归纳集合;并且根据公式可知,ω是最小的归纳集合。

这样,对ω的定义就是说存在一个由自然数构成的集合ω是归纳的,且对于一切S,如果S是归纳的,那么ω⊂S;若(T⊂ω)∧(T是归纳的),则T=ω;ω是一个传递集合,传递的定义:∀x∀y(x∈y ∧ y∈s→x∈s)。

序数的定义:1、0是序数;2、若a是序数,那a⁺也是序数;3、若s是序数一集合,则⋃s是序数;4、任一序数都是1~3得到的。

根据⋃s⊂s可知,⋃ω⊂ω,另外对于任一x,我们有x∈ω→x∈x⁺ ∧ x⁺∈ω→x∈⋃ω,所以ω⊂⋃ω。

所以ω是序数。

利用∀x,m∈ω,n<m,n=m,m<n和{x|x∈s ∧ ∀y(0∈y∧∀z(z∈y→z⁺∈y)→x∈y)},我们可以知道n是自然数,ω+n是序数。

{ω+n|n∈ω}是一集合,令F={〈n, ω+n〉| n∈ω},验证出F是类函数,并且有ran(F|ω)={ω+n, n∈ω},由替换原则可知,这是一类集合。

并且它的元素都是序数,故可知ω+ω是序数。

我们可以将其自然推广到ω+ω+1,ω+ω+2,ω+ω+3,……甚至是ω+ω+ω;并且令ω+ω=ω*2,……;可得到对于任一n∈ω,ω*n,并且令ω*ω=⋃{ω*n|n∈ω}。

我们仿照这样进行下去,就可以得到更加巨大的序数;对于任一序数,n∈ω,有ω^n,这就可以得到ω的幂,ω幂也是序数。

这样,我们就可以无穷无尽的进行下去,构造出更加复杂的序数。

此外,ω是极限序数,也就是说它不可能由前一个序数的后继得到,并且ω还是最小无穷序数且具有不可达性(即不可能由比它小的序数进行集论运算得到)

大基数公理

大基数都是利用集合论公理创造出来的,至于这些大基数是否真的存在,现在还无从得知。

比如不可达基数就是利用ℵ₀的不可达性而直接定义出的一种大基数,但是在ZFC系统中,我们并不能知晓它是否存在。

设关于基数α的一条性质P(α),它可以用ZFC的系统语言描述,人们相信,有很大的α使P(α)为真,但却无法在ZFC中证明∃αP(α)。

很多大基数的性质P(α)其实就是ω的某项性质向不可数基数推广而得到的,因此大基数公理就是无穷公理的自然延伸。

如:不可达基数就是将ω的“集论运算的不可到达性”推广到不可数基数得到的;弱紧基数则是将满足ω→(ω)²₂推广到不可数基数得到的。

而现在的人们更喜欢用从集合全域V(也就是冯·诺依曼宇宙)到某传递类M的非平凡基本嵌入j:V→M来描述大基数公理。

设k为j的临界点,即最小的满足j(α)=α的序数,记为k=crit(j)。

此时,V和M越相似,所引入的大基数公理就越强。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
2.1万字5个月前
月夜之情 连载中
月夜之情
乔忆娇
0.8万字5个月前
穿书后我在异世界当团宠帝姬 连载中
穿书后我在异世界当团宠帝姬
柳之之
神秘颜控少女沙小羊,某日在看完玛丽苏剧情的一本书后狠狠地吐槽了一番,结果证明……没事不要在背后说坏话Ծ‸Ծ,一觉醒来,她居然穿越到这本书里面......
8.1万字2个月前
重生之顶尖修真者 连载中
重生之顶尖修真者
一夜长雨
重生女x狼狗男甄秋重生到修真世界,在这个过程中与陌桦相遇,二人从互相试探到真心相待,甄秋一边在修真世界努力升级,一边应对各种阴谋诡计,最终成......
1.3万字2个月前
清风拂过叶林间 连载中
清风拂过叶林间
怜怜忧郁
四个人一起进入副本,探寻案件。案件一:拼凑娃娃案件二:泥墙母亲案件三:火锅男孩案件四:疯子父亲每一个案件都惊心动魄……“是真实发生的,还是我......
1.8万字2个月前
慕容归零 连载中
慕容归零
丽志_25672919270903971
慕容前世嫁给了蔡飞,蔡飞家暴直到而死都不明白是,原来蔡飞和慕楠早就勾搭在一起了。原来墨卿才是真正的爱我的,把她抱在怀里哭。蔡飞和慕楠你把墨卿......
5.1万字6天前