数学联邦政治世界观
超小超大

连续统基数

自然数集基数

定义自然数集基数:|N|=ℵ₀。

(κ<ℵ₀ ⇔ κ ∈ N)

自然数集基数运算

加法运算: ℵ₀+ℵ₀=ℵ₀

证明:令集合

A={αₙ|n ∈ N} B={bₙ|n ∈ N},A≈B≈N ⇒ |A|=|B|=ℵ₀ 。构建序列c₂ₖ=αₖ

(cₙ)∞ₙ₌₀={ 则c₂ₖ₊₁=bₖ

A∪B={cₙ|n ∈ N} ⇒ |A+B|=ℵ₀+ℵ₀=|C|=ℵ₀,得证。

推论:n+ℵ₀=ℵ₀

证明:由

n>0 ⇒ ℵ₀ ≤ n+ℵ₀ ≤ ℵ₀+ℵ₀=ℵ₀ ⇒ n+ℵ₀=ℵ₀ 。

乘法运算: ℵ₀ · ℵ₀=ℵ₀

证明:构建双射函数f:N² → N,

(m,n) (m+n+1)

f(m,n)=─────────+m。

2

详细证明参见:

推论:n · ℵ₀=ℵ₀

证明:

n ≥ 1 ⇒ ℵ₀ ≤ n · ℵ₀ ≤ ℵ₀ · ℵ₀=ℵ₀ ⇒ n · ℵ₀=ℵ₀ 。

幂运算: (ℵ₀)ⁿ=ℵ₀(乘法运算的推论)

连续统基数‬

(我们称实数集R 为连续统 Continuum)

定理

|R|=|P(N)|=|2ᴺ|。证明

1. 对 N 的子集构建 N → {0,1} 特征函数‬

0 n∈S

χₛ, ∀S ⊆ N χₛ(n)={ ,1 n∉S

特征函数形成 P(N) 与 {0,1}ᴺ 的一一映射,因此 |P(N)|=|2ᴺ|。

2. 通过 Dedekind Cut 定义实数为有理数集的分割 r=(A,B) A,B∈Q,R 到 P(Q) 形成单射函数 ⇒ |R| ≤ |P(Q)|=|P(N)|=|2ᴺ|。(此处 Q 为可数集,与 N 等势,因此幂集基数相等)

3. 实数作为无限不循环小数可表示为仅包含 0,1 无限数列 (αₙ)∞ₙ₌₀ 形式,即 0.α₀α₁α₂α₃ . . . .(αᵢ=0 1) ,形成 2ᴺ 到 R 的单射映射 ⇒|2ᴺ| ≤ |R| .

综合2,3,根据

Cαntor — Bernstein — Schroeder Theorem(定理相关笔记详见下方) |2ᴺ|=|R|,综合1,2,3,|P(N)|=|2ᴺ|=|R| 。

运算性质

(a)

n+2ℵ⁰=ℵ₀+2ℵ⁰=2ℵ⁰+2ℵ⁰=2ℵ⁰(n∈N)

证明:2ℵ⁰ ≤ n+2ℵ⁰ ≤ ℵ₀+2ℵ⁰ ≤ 2ℵ⁰+2ℵ⁰=2 · 2ℵ⁰=2ℵ⁰⁺¹=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。

(b)

n · 2ℵ⁰=ℵ₀ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰ (n∈N,n>0)

证明:

2ℵ⁰ ≤ n · 2ℵ⁰ ≤ ℵ⁰ · 2ℵ⁰ ≤ 2ℵ⁰ · 2ℵ⁰=2ℵ⁰ · 2ℵ⁰=2ℵ⁰⁺2ℵ⁰=2ℵ⁰,根据Cαntor — Bernstein — Schroeder Theorem 得证。

*** 推论 |R × R|=|R|

(c)

(2ℵ⁰)ⁿ=(2ℵ⁰)ℵ⁰=nℵ⁰=ℵ₀ℵ⁰=2ℵ⁰(n∈N,n>0)

证明:

2ℵ⁰ ≤ (2ℵ⁰)ⁿ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰,2ℵ⁰ ≤ nℵ⁰ ≤ ℵ₀ℵ⁰ ≤ (2ℵ⁰)ℵ⁰=2ℵ⁰ ²=2ℵ⁰

*** 推论: n 维实数空间 Rⁿ 的所有点集基数为 2ℵ⁰ 。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字3个月前
十铭:终致歉——刹那 连载中
十铭:终致歉——刹那
刹那乂
一位少女死后进入游戏开始找回记忆的热血故事“如果我的死,能换到重头再来……”“好久不见”“嗯,好久不见”本书为个人oc世界!原创!禁止抄袭角......
0.4万字3个月前
阿瑞亚大陆 连载中
阿瑞亚大陆
无名柳
(注:主角是短发的女性)人类世界以外的另一个空间,大陆的名字是直接引用了创世神的姓名。这片空间中诸多生灵相处和睦,无比美好。在那个扭曲微妙的......
22.1万字2个月前
我在快穿世界里发疯(不是) 连载中
我在快穿世界里发疯(不是)
有价无市
女主蒋芸,因为一次意外,她来到了这个叫快穿的世界。并且结识了叫瑞瑞的系统。可是,她似乎失去了自己的记忆。于是她大手一摆,竟然来了,那就好好玩......
14.3万字2个月前
浮生若梦云生惊蛰 连载中
浮生若梦云生惊蛰
曷月予还归哉
整一个故事架构和时间跨度巨大,日更的话需要很久,请各位读者耐心轮回之内轮回之外,革新与守旧,天命与人力樱花当自由盛开,也当自由凋零,投身烈火......
120.9万字2周前
还好不算晚 连载中
还好不算晚
万花飘落
喜欢点点收藏呗!➤师徒文➤非穿越➤短文
1.2万字5天前