数学联邦政治世界观
超小超大

数学

不可表达基数

对分划性质k→(k)²₂进行适当扩张定义的基数。

设对于任何划分f:[k]²→2,存在k的一驻子集X⊆k,满足|f"[x]²"|=1,则称k满足k→(驻子集)²₂。

若k>ω且满足k→(驻集)²₂,则称k是不可表达基数。

注意到测度为1集必是驻集,驻集的基数必与原来集合的基数相等,故可测基数必是不可表达基数,不可表达基数必是弱紧基数。

Kunen证明了不可表达基数是π¹₂不可描述的。

Jensen和Solovay指出,若k是不可表达基数,则不存在k库巴雷树;在可构造公理下,k是不可表达基数,当且仅当不存在k库巴雷树。

若k是不可表达基数,则不存在k阿龙扎杨树。

爱尔特希基数

任给序数α,记满足分划性质k→(α₂)^(<ω)的最小基数k为k(α),称为爱尔特希基数。

爱尔特希基数是随α变化而变化的基数。

Erdös与Hajnal证明:k(α)<k(α+1),即爱尔特希基数是随α严格上升的;若α是极限序数,则k(α)是强不可达基数。

利用这个基数,可以很方便的定义拉姆齐基数:爱尔特希基数函数k(α)的不动点即是拉姆齐基数,即满足k(η)=η的η是拉姆齐基数。

延森基数

若每个大小为k的可数语言模型ℳ都有大小为k的初等真子集模型ℬ,则称无穷基数k为延森基数。

等价条件刻画:对于每个划分F:[k]^(<ω)→k,都存在H⊆k,|H|=k,使[H]^(<ω)在F下的像不是整个k集。

Erdös和Hajnal证明了,没有一个阿列夫数是延森基数;Rowbottom证明了最小的延森基数是弱不可达的或有共尾ω;而Keisler和Rowbottom证明,若V=L,则不存在延森基数;Kunen证明存在这么个模型:在其中每个延森基数都是拉姆齐基数。

∏ᵐ_n公式

指高阶语言中合式公式的一种范式,在高阶语言中,若一公式的前束范式的较高阶量词在较低阶量词之前,则称此范式为完全前束范式。

若完全前束范式的最前面量词是m+1阶全称量词(或存在量词),并且m+1阶的量词共有n层,则称此公式为∏ᵐ_n公式。

∏ᵐ_n不可描述基数

若对于任何仅含一个二阶自由变元X的∏ᵐ_n公式Φ(X),当有α层结构〈V_α, ∈ | V_α, R〉满足Φ(R)时,即〈V_α, ∈ | V_α, R〉⊨ Φ(R)成立时,存在β<α,使β层子结构也满足Φ(R),即〈V_β, ∈ | V_β, R∩V_β〉⊨ Φ(R∩V_β),则称基数α为∏ᵐ_n不可描述基数。

k是不可达基数,当且仅当k是∏¹₀不可描述基数,又当且仅当k是∑¹₁不可描述基数;k是弱紧基数,当且仅当k是∏¹₁不可描述基数;若k是可测基数,当且仅当k是∏²₁不可描述基数。

语言基数

是语言中全体逻辑符号的非逻辑符号合集的基数。

语言ℳ的基数记为||ℳ||,定义如下:||ℳ||=ω∪|ℳ|,其中ω是自然数的基数,|ℳ|表示在ℳ中出现的非逻辑符号集合的基数。

如果||ℳ||是可数的,称ℳ是可数语言基数;反之则为不可数语言基数。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

多重宇宙:离婚后,为她一夜白头 连载中
多重宇宙:离婚后,为她一夜白头
笨笨笨小妙
跟心心念念的男人结婚五年后...我心灰意冷,决定离婚。却在一场车祸后...窥探到另一个时空的我和他...原来,那个不说爱的男人,在另一个时空......
28.2万字2个月前
疯批美人他权势滔天 连载中
疯批美人他权势滔天
权天官
疯批美人摄政王VS高冷正义小徒弟书又名:《知途》温使墨从一个人人喊打的丧家之犬,和从尸山血海里爬出来的厉鬼,成为如今人人喊骂,却人人畏惧的摄......
0.2万字3个月前
快穿:娇软万人迷 连载中
快穿:娇软万人迷
江鱼不是鱼
全员单箭头,一见钟情梗,万人迷,脑子寄存—
3.8万字1个月前
漂亮的女人 连载中
漂亮的女人
飞向天宏
某夏天,漂亮的女人与闺蜜去海滩晒太阳,享受着阳光紫外线美身,结果从南方卷起了超强龙卷风……一场意外,成就她们的美梦!
8.0万字2周前
半心遗音 连载中
半心遗音
岑笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.2万字2周前
碎梦之白鲸神明 连载中
碎梦之白鲸神明
白页茉
天空中的鲸鱼……在海里泡着的云朵……
2.3万字5天前