第三篇章终极集合论宇宙(V=UltimateL)

终极集合论宇宙(V=UltimateL)

TheMostowskiCollapse and the lnner Model

program

w.Hughwoodin

usiversity of CaEtyaia BerLeley

October 11.2013

TheMostowskiCoollapse

Theorcm

Suppose Mis atransitivesetandΧ≺M.Tbenthereisa unique transitve set Nand isomorphism

π:N≅Χ.

ThegentrallIatiorsof the Mostowski Collapseareubiquitousin set Theory.

The Universeofsets

Thepowersct

suppose Χ is a set 。The powerset of Χ is the set

Р(X)={Y丨Y is a subset of Χ}.

CumuJativeHierarchyofScts TheunherseVofsetsisgeneratedbydeflningVαbyinductionontheordinalα:

1.V₀=∅.

2.Vα+1=Ρ(Vα).

3.ifαisalimitordinalthenVα=Uᵦ<αVᵦ.

⇨EverysetbeloegstoVαforsomeordinalα.

Logicaldefinabilityfromparameters

BchedDooset

SupposeΧisatransitiveset.AsubsetΥ⊆Χislogicallydeflnablein(Χ,∈)fromparmetersifforsomeformula φ[x₀……x₀]andforsomeparametersa₁……a₂∈Χ,

Υ={a∈Χ丨(Χ,∈)╞ φ[a,a₁……a₀]}

Thedefinablepowerset

ForeachsetΧ,Рᴅel(Χ)denotesthesetofallΥ⊆ΧsuchthatΧislogicallydtfinableinthestructure(Χ,∈)fromparametersinΧ.

⇨(AxiomofChoice)Рᴅel(Χ)=Р(X)ifandonlyifΧisflnite。

⇨Рᴅel(Vᴊ+1)∩Р(R)isexactlytheprojectivesets.

Theeffectivecumulativehierarchy:L

Gōdd'sconstructibleuniverse.L

DefineLαbyinductiononαasfollows.

1.L₀=∅.

2.(Successorcase)Lα+1=Рᴅel(Lα).

3.(Limitcase)Lα=∪{Lᵦ丨β<α).

ListheclassofallsetsΧsuchthatΧ∈Lαforsomeordinalα.

Theorem(Gōdel)

SupposeΧ≺Lα.Thenthereisauniqueordinalβand

isomorphism

π:Lᵦ≅Χ.

Theorem(Scott)

AssumeV=LSupposeMisatransitivesetandthat

Χ≺M

isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.

AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.

Χ≅Vα

andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.

⇨TheseaxiocnsimplyV≠L.

Stiongaxcmsofinfinity:largecardinalaxioms

BzrJmpJateforlargecardinalaxioms

Acardinalκisalargecardinalifthereexistsanelementaryembedding.

j:V→M

suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.

⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:

⇨simplestcaseiswhereκisameasurablecardinal.

⇨M=VcontradictstheAxiomofChoice.

ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.

⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.

Thehierarchyoflargecardinalaxioms-shortversion

⇨Thereisaproperclassofmeasurablecardinals.

⇨Thereisaproperclassofstrongcardinals.

⇨Thereisaproperclassofwoodincardinals.

⇨Thereisaproperclassofsuprstrongcardinals.

…………………

⇨Thereisaproperclassofsupercompactcardinals.

⇨Thereaproperclassofextendiblecardinals.

⇨Thereaproperclassofhugecardinals.

⇨Thereaproperclassofw-hugecardinals.

EnlargementsofL

Deflnition

SupposeEisaset(orclass).Then

1.L₀[E]=∅.

2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where

Z=Lα[E]∪{E∩Lα[E]}.

3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.

⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.

⇨lfE∩L=0thenL[E]=L

⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].

⇨ThisisequivalenttotheAxiomofChoice.

Thebuildingblocksforinnermodels:Extenders

supposethat

j:V→M

isarelementaryembeddingwithcniticalpointκ,κ<η.andthat

Р(η)⊂M.

The(strong)extcnderEoflengthηdcrivedfromj

TheextenderEoflengthηdefinedfromjisthefunction:

E:Р(η)→Р(η)

whereE(A)=j(A)∩η.

TwoordinalsassociatedtotheextenderE:

⇨CRT(E)=min{α丨E(α)≠α}=κ.

⇨LTH(E)=ηwheredocn(E)=Р(η).

Largecardinalaxiomsintermsofextenders

δ isastrongcardinalif

⇨foreach γ>δ thereexistsanextenderEsuchthat

CRT(E)=δandLTH(E)≥ γ.

δisasupercompactcardinalif

⇨foreach γ>δ thereexistsanextenderEsuchthat

E(CRT(E))=δandLTH(E)≥γ.

δisanextendiblecardinalif

⇨foreachγ>δ thereexistsanextenderEsuchthat

CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).

weakextendermodelsandextendermodels

Foralargecardinalaxiom Φ:

Deflnition

AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat

E=F丨N

forsomeextenderF.

⇨lfΦholdsinVthenVisaweakextendermodelforΦ.

Deflnition

AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:

1.N=L[E].

2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.

ThelnnerModelprogram

ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:

Question

Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?

Theorem(Martin-Steel)

Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.

Theorem(Martin-Steel)

SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.

Beyondsuperstrong:theUniversalityTheorem

Thcorem(UniversaΓtyTheorcm)

SupposethatNisaweakextendermodelforδissupercompact.

supposethatFisanextendersuchthat:

⇨CRT(F)≥δandNisclosedunderF.

ThenF丨N∈N.

⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L

⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.

Conclution

TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel

⇨itmustyieldanultimateversionofL.

Gödel’stransitiveclassHOD

⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.

Deflnition

Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:

1.ΧisdefinableinVαfromordinalparameters.

2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.

⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.

OefinlenM(Gödel)

HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.

whatabutextendermodelsforsupercompactcardinals?

Deflnition

supposethatE=(Eα:α∈Ord)isasequence.

ThenEisweakly∑₂-definableifthereisaformua φ(x)suchthatforallβ∈ord.

⇨for all β<η₁<η₂<η₃ .if

(E)ᵛᵉˢ丨β=(E)ᵛᵉˢ丨β

then(E)ᵛᵉ¹丨β=(E)ᵛᵉ²丨β=(E)ᵛᵉ³丨β.

where(E)ᵛ⁷={a∈Vα丨Vγ╞φ [a]}.

⇨Thesequtnce(HOD∩Vα:α∈Ord)isweakly∑₂-dtfnable.

Aseriousobstruction

⇨Assumethereisaproperclassofsupercompactcardinals

Byclassforcingonecanarrangethatthefollowinghold

1.V=HODandthereisaproperclassofsupercompactcardinals.

2.SupposeEisanextendersequencesuchthat

(a)L[E]isanextendermodelforδisasupercompact

(b)Eisweakly∑₂-deflnable.

ThenV⊆L[E].

Ramiflcations

RulesoutdeVelopingthelnnerModelprogramtothelevelofconstructingextendermodelsfor δ issupercompact.

⇨lnfactonecannotgobeyondtheMartin-Steelextendermodelsinanyessentialway.

Рartial-extendersandpartial-extendermodels

A partial-extender E of length η isobtainel from an elementary embedding.

j:N→M

whereN∩Р(η)=M∩Р(η):

1.E has domain N∩P(η):

2.E(A)=j(A)∩η.

Deflnition

AtransitiveclassNisapartial-extendermodelsequenceEofpartial-extenders:

1.N=L[E].

2.Nisaweakextendermodelfor Φ andthisiswitnessedbythe ∽₁:alextendersonthesequenceE.

Goodpertial-extendermodels

⇨Eveyweakextendermodelcanbere-organiIedasapartial-extendermodel.therefore:

⇨ReguireagererakIationoftheMostowskiCollapse.

Defmition

SupposeL[E]isapartial-extendermodel.ThenL[E]ispartial-extendermodelifforall

η<α.if

X≺(Lα[E].E∩Lα[E])

istheelementarysubstructuregivenbytheelementswhicharedeflnablewithparametensfromηthen.

Χ≅(Lᵦ[E].E∩Lᵦ[E])

for some β.

⇨lfL[E]isagoodpartial-extendermodelthenthecontinuumHypothesisholdsinL[E].

Mitchell-Steelmodels

⇨Thebasicframewcrkforgoodpartial-extendersmodelsforlargecardinalsuptothelevelofsuperstrongcardinalsoriginatesintheconstuctionsofMitchellandSteel.

⇨ThereisanimportantvaiationduetoJensenwhichisequivalentbutyiekjsmodelswithstrongercondensationproperties.

Theeorem(MitchellSteeletal)

Assumethereisaproperclassofwoodincardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofwoodincardinalssachthat

(1)Eisweakly∑₂-definable.

(2)L[E]isagoodpartial-extendermodel.

Theorem(Mitchell-Steeletal)

AssumetheltenationHypothesisandthatthereisaproperclassofsuperstrongcardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofsuperstrongcardinalssuchthat

(1)Eisweakly∑₂-definable。

(2)L[E]isagoodpartial-extendermodel.

Conjecture

AssumethelterationHypothesisandthatthereisanextendibiecardinal.Thenthereisapartial-extendermodelL[E]forasupercompactcardinalsuchthat

(1)Eisweakly∑₂-definable.

(2)L[E]isagoodpartial-extendermodel.

Afirststep

Theorem

AssumethereisasupercompactcardinalandthatthelterationHypothesisholds.Thenthereisapartial-extendermodelL[E]suchthat

(1)Eisweakly∑₂-deflnable。

(2)L[E]isagoodpartial-extendermodel.

(3)L[E]isaweakextendermodelfortheexistenceofκsuchthatκisκᵒⁿ-supercompactforalln<ω.

⇨Thetheoremshowsthattheobstructionscanbesuccessfullydealtwith.

⇨Theconstructionsseemtoindicatehowtohandlethegeneralcase.

TheGeneric-Multiverse

Definition

SupposethatMisacountabletransitivesetandthat

M╞ZFC.

Thegeneric-multiversegeneratedbyMisthesmallestsetVᴍofcountabletransitivesetssuchthatforallpairs(N₀,N₁)ofcountabletransitivesetsif

1.N₁isagenericextensionofN₀

2.eitherN₀∈VᴍorN₁∈VᴍthenbothN₀∈VᴍandN₁∈Vᴍ.

(meta)Definition

TheGeneric-Multiverseisthegeneric-multiversegeneratedbyV.

Mitchell-SteelmodelsandtheGeneric-Multiverse

Lemma(V=L)

VistheminimumuniverseoftheGeneric-Multiverse.

Thcorem

SupposeL[E]isan(iterable)Mitchell-Steelmodeland

L[E]╞TbctelsawoodincardinΓ.

ThenthereisaMitchell-SteelmodelL[F]⊂L[E]suchthatL[E]isageneΙcextensionofL[F].

ThesametheoremappliestotheextensionofMitchell-Steelmodelsbeyondsuperstrong.

lsUltimate-LageneralizedMitchell-Steelmodel?

AssumetheHerationHypothesisholdsinVandthatthereisaproperclassofmeasurablewoodincardinals.

⇨ltisnotknownifthereexistsaMitchell-SteelmodelL[E]foraproperclassofmeasurablswoodincardinalswithinwhichEisdefinablecevenfromparameters).

⇨SupposeL[E]isaMitchell-Steelmodelwithinwhichthereexistsawoodincardinal.TheinductivefirstorderrequirementsonLα[E]arevtrycomplicated:

⇨thingsoelygetworseforthegentraliIedMitchel-Steelmodels.

Twoquestions

1.lsthereasimplecandidatefortheaxiomⅤ=Ultimate-L”?

2.lsUltimate-Levenagoodpartial-extendermodel?

UniversallyBairesets

Definition(Feng-Magidoe-woodin)

AsetA⊆RisuniversallyBaireifforalltopologicalspacesΩandforallcontinuousfunctions:Ω→R.thepreimageofAbyπhasthepropertyofBaireinthespaceΩ.

⇨UniversallyBairesetsareanabstractgeneraliIationoftheborelsets.

Theorcm

SupposethatthereisaproperclassofwoodincardinalsandthatA⊆RisuniversallyBaire.Theneveryset

B∈L(A,R)∩Р(R)

isuniversallyBaire.

HODᴸ(ᴬᴿ)andlargecardinalaxioms

Definition

SupposethatA⊆RisuniversallyBaire.

ThenΘᴸ(ᴬᴿ)isthesupremumoftheordinalsαsuchthatthereisasurjection.π:R→α.suchthatπ∈L(A,R).

⇨Θᴸ(ᴬᴿ)isameasureofthecomplexityofA.

Relnrme

SupposethatthereisaproperclassofwoodincardinalsandthatAisuniversallyBaire.

ThenΘᴸ(ᴬᴿ)isawoodincardinalinHODᴸ(ᴬᴿ).

HODᴸ(ᴬᴿ)andthelnnerModelprogram

Theorcm(Steel)

Supposethatthereisaproperclassofwoodincardinalsandletδ=Θᴸ(ᴿ).

ThenHODᴸ(ᴿ)∩VδisaMitchell-Steelmodel.

Theorcm

Supposethatthereisaproperclassofwoodincardinals.

ThenHODᴸ(ᴿ)isnotaMitchell-Steelmodel.

Thereisanotherclassofsolutionstotheinnermodelproblemforlargecardinals.

⇨strategicpartial-extendermodels

⇨previouslyuhknown.

TheaxiomforV=Ultimate-L

(meta)Conjecture:TheaxiomforV=Ultimate-L

⇨Thereisastrongcardinalandaproperclassofwoodincardinals.

⇨Foreach∑₃-sentence φ,if φ holdsin V thenthereisauniversallyBairesetA⊆Rsuchthat

HODᴸ(ᴬᴿ)∩VΘ╞φ

where Θ=Θᴸ(ᴬᴿ).

⇨Theaxiomsettles(moduloaxiomsofinfinity)allsentencesaboutp(R)(andmuchmore)whichhavebeenshowntobeindependentbyCohen’smethod.

Theorcm(V=Ultimate-L)

TheComtinuumHypothesisholds。

MoreconsequencesofV=Ultimate-L

Theorem(V=Ultimate-L)

Foreachcardinalκ.ifV[G]isaset-genericextensionofVthenthereexistsanelementaryembedding

π:(H(κ¹))ᵛ→N

u:kN+1(π,N)∈VandsuchthatN∈HODᵛ[ᶜ].

corollary(V=Ultimate-L)

V=HOD.

corollary(V=Ultimate-L)

Vistheminimumuniverse of the Generic-Multiverse.

(本章完)

相关推荐