塞瓦定理
Ceva's theorem
If the straight lines joining the vertices A,B,C of a triangle to a point O of its plane meet the opposite sides at P,Q,R,then
BP
CQ
AR
── · ── · ──=1
PC
QA
RB
pf:ThroughO draw a line LMN parallel to BC , meeting BC at L∞ , CA at M,AB at N . Then the ranges (BPL∞C),(QAMC) are perspective from O. Hence
BP · L∞C
BP
QA · MC
─────=──=────
BC · L∞P
BC
QC · MA
Similarly(CPL∞B),(RANB) are perspective from O . Hence
CP · L∞B
CP
RA · N∞B
─────=──=─────
CB · L∞P
CB
RB · N∞A
⇒
BP
QA
CM
RB
AN
──=── · ── · ── · ──
PC
CQ
MA
AR
NB
Notice that AN:NB=AM:MC,we're done.
(本章完)