终极集合论宇宙(V=UltimateL)
TheMostowskiCollapse and the lnner Model
program
w.Hughwoodin
usiversity of CaEtyaia BerLeley
October 11.2013
TheMostowskiCoollapse
Theorcm
Suppose Mis atransitivesetandΧ≺M.Tbenthereisa unique transitve set Nand isomorphism
π:N≅Χ.
ThegentrallIatiorsof the Mostowski Collapseareubiquitousin set Theory.
The Universeofsets
Thepowersct
suppose Χ is a set 。The powerset of Χ is the set
Р(X)={Y丨Y is a subset of Χ}.
CumuJativeHierarchyofScts TheunherseVofsetsisgeneratedbydeflningVαbyinductionontheordinalα:
1.V₀=∅.
2.Vα+1=Ρ(Vα).
3.ifαisalimitordinalthenVα=Uᵦ<αVᵦ.
⇨EverysetbeloegstoVαforsomeordinalα.
Logicaldefinabilityfromparameters
BchedDooset
SupposeΧisatransitiveset.AsubsetΥ⊆Χislogicallydeflnablein(Χ,∈)fromparmetersifforsomeformula φ[x₀……x₀]andforsomeparametersa₁……a₂∈Χ,
Υ={a∈Χ丨(Χ,∈)╞ φ[a,a₁……a₀]}
Thedefinablepowerset
ForeachsetΧ,Рᴅel(Χ)denotesthesetofallΥ⊆ΧsuchthatΧislogicallydtfinableinthestructure(Χ,∈)fromparametersinΧ.
⇨(AxiomofChoice)Рᴅel(Χ)=Р(X)ifandonlyifΧisflnite。
⇨Рᴅel(Vᴊ+1)∩Р(R)isexactlytheprojectivesets.
Theeffectivecumulativehierarchy:L
Gōdd'sconstructibleuniverse.L
DefineLαbyinductiononαasfollows.
1.L₀=∅.
2.(Successorcase)Lα+1=Рᴅel(Lα).
3.(Limitcase)Lα=∪{Lᵦ丨β<α).
ListheclassofallsetsΧsuchthatΧ∈Lαforsomeordinalα.
Theorem(Gōdel)
SupposeΧ≺Lα.Thenthereisauniqueordinalβand
isomorphism
π:Lᵦ≅Χ.
Theorem(Scott)
AssumeV=LSupposeMisatransitivesetandthat
Χ≺M
isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.
AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.
Χ≅Vα
andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.
⇨TheseaxiocnsimplyV≠L.
Stiongaxcmsofinfinity:largecardinalaxioms
BzrJmpJateforlargecardinalaxioms
Acardinalκisalargecardinalifthereexistsanelementaryembedding.
j:V→M
suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.
⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:
⇨simplestcaseiswhereκisameasurablecardinal.
⇨M=VcontradictstheAxiomofChoice.
ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.
⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.
Thehierarchyoflargecardinalaxioms-shortversion
⇨Thereisaproperclassofmeasurablecardinals.
⇨Thereisaproperclassofstrongcardinals.
⇨Thereisaproperclassofwoodincardinals.
⇨Thereisaproperclassofsuprstrongcardinals.
…………………
⇨Thereisaproperclassofsupercompactcardinals.
⇨Thereaproperclassofextendiblecardinals.
⇨Thereaproperclassofhugecardinals.
⇨Thereaproperclassofw-hugecardinals.
EnlargementsofL
Deflnition
SupposeEisaset(orclass).Then
1.L₀[E]=∅.
2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where
Z=Lα[E]∪{E∩Lα[E]}.
3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.
⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.
⇨lfE∩L=0thenL[E]=L
⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].
⇨ThisisequivalenttotheAxiomofChoice.
Thebuildingblocksforinnermodels:Extenders
supposethat
j:V→M
isarelementaryembeddingwithcniticalpointκ,κ<η.andthat
Р(η)⊂M.
The(strong)extcnderEoflengthηdcrivedfromj
TheextenderEoflengthηdefinedfromjisthefunction:
E:Р(η)→Р(η)
whereE(A)=j(A)∩η.
TwoordinalsassociatedtotheextenderE:
⇨CRT(E)=min{α丨E(α)≠α}=κ.
⇨LTH(E)=ηwheredocn(E)=Р(η).
Largecardinalaxiomsintermsofextenders
δ isastrongcardinalif
⇨foreach γ>δ thereexistsanextenderEsuchthat
CRT(E)=δandLTH(E)≥ γ.
δisasupercompactcardinalif
⇨foreach γ>δ thereexistsanextenderEsuchthat
E(CRT(E))=δandLTH(E)≥γ.
δisanextendiblecardinalif
⇨foreachγ>δ thereexistsanextenderEsuchthat
CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).
weakextendermodelsandextendermodels
Foralargecardinalaxiom Φ:
Deflnition
AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat
E=F丨N
forsomeextenderF.
⇨lfΦholdsinVthenVisaweakextendermodelforΦ.
Deflnition
AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:
1.N=L[E].
2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.
ThelnnerModelprogram
ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:
Question
Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?
Theorem(Martin-Steel)
Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.
Theorem(Martin-Steel)
SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.
Beyondsuperstrong:theUniversalityTheorem
Thcorem(UniversaΓtyTheorcm)
SupposethatNisaweakextendermodelforδissupercompact.
supposethatFisanextendersuchthat:
⇨CRT(F)≥δandNisclosedunderF.
ThenF丨N∈N.
⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L
⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.
Conclution
TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel
⇨itmustyieldanultimateversionofL.
Gödel’stransitiveclassHOD
⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.
Deflnition
Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:
1.ΧisdefinableinVαfromordinalparameters.
2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.
⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.
OefinlenM(Gödel)
HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.
whatabutextendermodelsforsupercompactcardinals?
Deflnition
supposethatE=(Eα:α∈Ord)isasequence.
ThenEisweakly∑₂-definableifthereisaformua φ(x)suchthatforallβ∈ord.
⇨for all β<η₁<η₂<η₃ .if
(E)ᵛᵉˢ丨β=(E)ᵛᵉˢ丨β
then(E)ᵛᵉ¹丨β=(E)ᵛᵉ²丨β=(E)ᵛᵉ³丨β.
where(E)ᵛ⁷={a∈Vα丨Vγ╞φ [a]}.
⇨Thesequtnce(HOD∩Vα:α∈Ord)isweakly∑₂-dtfnable.
Aseriousobstruction
⇨Assumethereisaproperclassofsupercompactcardinals
Byclassforcingonecanarrangethatthefollowinghold
1.V=HODandthereisaproperclassofsupercompactcardinals.
2.SupposeEisanextendersequencesuchthat
(a)L[E]isanextendermodelforδisasupercompact
(b)Eisweakly∑₂-deflnable.
ThenV⊆L[E].
Ramiflcations
RulesoutdeVelopingthelnnerModelprogramtothelevelofconstructingextendermodelsfor δ issupercompact.
⇨lnfactonecannotgobeyondtheMartin-Steelextendermodelsinanyessentialway.
Рartial-extendersandpartial-extendermodels
A partial-extender E of length η isobtainel from an elementary embedding.
j:N→M
whereN∩Р(η)=M∩Р(η):
1.E has domain N∩P(η):
2.E(A)=j(A)∩η.
Deflnition
AtransitiveclassNisapartial-extendermodelsequenceEofpartial-extenders:
1.N=L[E].
2.Nisaweakextendermodelfor Φ andthisiswitnessedbythe ∽₁:alextendersonthesequenceE.
Goodpertial-extendermodels
⇨Eveyweakextendermodelcanbere-organiIedasapartial-extendermodel.therefore:
⇨ReguireagererakIationoftheMostowskiCollapse.
Defmition
SupposeL[E]isapartial-extendermodel.ThenL[E]ispartial-extendermodelifforall
η<α.if
X≺(Lα[E].E∩Lα[E])
istheelementarysubstructuregivenbytheelementswhicharedeflnablewithparametensfromηthen.
Χ≅(Lᵦ[E].E∩Lᵦ[E])
for some β.
⇨lfL[E]isagoodpartial-extendermodelthenthecontinuumHypothesisholdsinL[E].
Mitchell-Steelmodels
⇨Thebasicframewcrkforgoodpartial-extendersmodelsforlargecardinalsuptothelevelofsuperstrongcardinalsoriginatesintheconstuctionsofMitchellandSteel.
⇨ThereisanimportantvaiationduetoJensenwhichisequivalentbutyiekjsmodelswithstrongercondensationproperties.
Theeorem(MitchellSteeletal)
Assumethereisaproperclassofwoodincardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofwoodincardinalssachthat
(1)Eisweakly∑₂-definable.
(2)L[E]isagoodpartial-extendermodel.
Theorem(Mitchell-Steeletal)
AssumetheltenationHypothesisandthatthereisaproperclassofsuperstrongcardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofsuperstrongcardinalssuchthat
(1)Eisweakly∑₂-definable。
(2)L[E]isagoodpartial-extendermodel.
Conjecture
AssumethelterationHypothesisandthatthereisanextendibiecardinal.Thenthereisapartial-extendermodelL[E]forasupercompactcardinalsuchthat
(1)Eisweakly∑₂-definable.
(2)L[E]isagoodpartial-extendermodel.
Afirststep
Theorem
AssumethereisasupercompactcardinalandthatthelterationHypothesisholds.Thenthereisapartial-extendermodelL[E]suchthat
(1)Eisweakly∑₂-deflnable。
(2)L[E]isagoodpartial-extendermodel.
(3)L[E]isaweakextendermodelfortheexistenceofκsuchthatκisκᵒⁿ-supercompactforalln<ω.
⇨Thetheoremshowsthattheobstructionscanbesuccessfullydealtwith.
⇨Theconstructionsseemtoindicatehowtohandlethegeneralcase.
TheGeneric-Multiverse
Definition
SupposethatMisacountabletransitivesetandthat
M╞ZFC.
Thegeneric-multiversegeneratedbyMisthesmallestsetVᴍofcountabletransitivesetssuchthatforallpairs(N₀,N₁)ofcountabletransitivesetsif
1.N₁isagenericextensionofN₀
2.eitherN₀∈VᴍorN₁∈VᴍthenbothN₀∈VᴍandN₁∈Vᴍ.
(meta)Definition
TheGeneric-Multiverseisthegeneric-multiversegeneratedbyV.
Mitchell-SteelmodelsandtheGeneric-Multiverse
Lemma(V=L)
VistheminimumuniverseoftheGeneric-Multiverse.
Thcorem
SupposeL[E]isan(iterable)Mitchell-Steelmodeland
L[E]╞TbctelsawoodincardinΓ.
ThenthereisaMitchell-SteelmodelL[F]⊂L[E]suchthatL[E]isageneΙcextensionofL[F].
ThesametheoremappliestotheextensionofMitchell-Steelmodelsbeyondsuperstrong.
lsUltimate-LageneralizedMitchell-Steelmodel?
AssumetheHerationHypothesisholdsinVandthatthereisaproperclassofmeasurablewoodincardinals.
⇨ltisnotknownifthereexistsaMitchell-SteelmodelL[E]foraproperclassofmeasurablswoodincardinalswithinwhichEisdefinablecevenfromparameters).
⇨SupposeL[E]isaMitchell-Steelmodelwithinwhichthereexistsawoodincardinal.TheinductivefirstorderrequirementsonLα[E]arevtrycomplicated:
⇨thingsoelygetworseforthegentraliIedMitchel-Steelmodels.
Twoquestions
1.lsthereasimplecandidatefortheaxiomⅤ=Ultimate-L”?
2.lsUltimate-Levenagoodpartial-extendermodel?
UniversallyBairesets
Definition(Feng-Magidoe-woodin)
AsetA⊆RisuniversallyBaireifforalltopologicalspacesΩandforallcontinuousfunctions:Ω→R.thepreimageofAbyπhasthepropertyofBaireinthespaceΩ.
⇨UniversallyBairesetsareanabstractgeneraliIationoftheborelsets.
Theorcm
SupposethatthereisaproperclassofwoodincardinalsandthatA⊆RisuniversallyBaire.Theneveryset
B∈L(A,R)∩Р(R)
isuniversallyBaire.
HODᴸ(ᴬᴿ)andlargecardinalaxioms
Definition
SupposethatA⊆RisuniversallyBaire.
ThenΘᴸ(ᴬᴿ)isthesupremumoftheordinalsαsuchthatthereisasurjection.π:R→α.suchthatπ∈L(A,R).
⇨Θᴸ(ᴬᴿ)isameasureofthecomplexityofA.
Relnrme
SupposethatthereisaproperclassofwoodincardinalsandthatAisuniversallyBaire.
ThenΘᴸ(ᴬᴿ)isawoodincardinalinHODᴸ(ᴬᴿ).
HODᴸ(ᴬᴿ)andthelnnerModelprogram
Theorcm(Steel)
Supposethatthereisaproperclassofwoodincardinalsandletδ=Θᴸ(ᴿ).
ThenHODᴸ(ᴿ)∩VδisaMitchell-Steelmodel.
Theorcm
Supposethatthereisaproperclassofwoodincardinals.
ThenHODᴸ(ᴿ)isnotaMitchell-Steelmodel.
Thereisanotherclassofsolutionstotheinnermodelproblemforlargecardinals.
⇨strategicpartial-extendermodels
⇨previouslyuhknown.
TheaxiomforV=Ultimate-L
(meta)Conjecture:TheaxiomforV=Ultimate-L
⇨Thereisastrongcardinalandaproperclassofwoodincardinals.
⇨Foreach∑₃-sentence φ,if φ holdsin V thenthereisauniversallyBairesetA⊆Rsuchthat
HODᴸ(ᴬᴿ)∩VΘ╞φ
where Θ=Θᴸ(ᴬᴿ).
⇨Theaxiomsettles(moduloaxiomsofinfinity)allsentencesaboutp(R)(andmuchmore)whichhavebeenshowntobeindependentbyCohen’smethod.
Theorcm(V=Ultimate-L)
TheComtinuumHypothesisholds。
MoreconsequencesofV=Ultimate-L
Theorem(V=Ultimate-L)
Foreachcardinalκ.ifV[G]isaset-genericextensionofVthenthereexistsanelementaryembedding
π:(H(κ¹))ᵛ→N
u:kN+1(π,N)∈VandsuchthatN∈HODᵛ[ᶜ].
corollary(V=Ultimate-L)
V=HOD.
corollary(V=Ultimate-L)
Vistheminimumuniverse of the Generic-Multiverse.
数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。