数学联邦政治世界观
超小超大

第三篇章终极集合论宇宙(V=UltimateL)

终极集合论宇宙(V=UltimateL)

  TheMostowskiCollapse and the lnner Model

  program

  w.Hughwoodin

  usiversity of CaEtyaia BerLeley

  October 11.2013

  TheMostowskiCoollapse

  Theorcm

  Suppose Mis atransitivesetandΧ≺M.Tbenthereisa unique transitve set Nand isomorphism

  π:N≅Χ.

  ThegentrallIatiorsof the Mostowski Collapseareubiquitousin set Theory.

  The Universeofsets

  Thepowersct

  suppose Χ is a set 。The powerset of Χ is the set

  Р(X)={Y丨Y is a subset of Χ}. 

   CumuJativeHierarchyofScts TheunherseVofsetsisgeneratedbydeflningVαbyinductionontheordinalα:

  1.V₀=∅.

  2.Vα+1=Ρ(Vα).

  3.ifαisalimitordinalthenVα=Uᵦ<αVᵦ.

  ⇨EverysetbeloegstoVαforsomeordinalα.

  Logicaldefinabilityfromparameters

  BchedDooset

  SupposeΧisatransitiveset.AsubsetΥ⊆Χislogicallydeflnablein(Χ,∈)fromparmetersifforsomeformula φ[x₀……x₀]andforsomeparametersa₁……a₂∈Χ,

  Υ={a∈Χ丨(Χ,∈)╞ φ[a,a₁……a₀]}

  Thedefinablepowerset

  ForeachsetΧ,Рᴅel(Χ)denotesthesetofallΥ⊆ΧsuchthatΧislogicallydtfinableinthestructure(Χ,∈)fromparametersinΧ.

  ⇨(AxiomofChoice)Рᴅel(Χ)=Р(X)ifandonlyifΧisflnite。

  ⇨Рᴅel(Vᴊ+1)∩Р(R)isexactlytheprojectivesets.

  Theeffectivecumulativehierarchy:L

  Gōdd'sconstructibleuniverse.L

  DefineLαbyinductiononαasfollows.

  1.L₀=∅.

  2.(Successorcase)Lα+1=Рᴅel(Lα).

  3.(Limitcase)Lα=∪{Lᵦ丨β<α).

  ListheclassofallsetsΧsuchthatΧ∈Lαforsomeordinalα.

  Theorem(Gōdel)

  SupposeΧ≺Lα.Thenthereisauniqueordinalβand

  isomorphism

  π:Lᵦ≅Χ.

  Theorem(Scott)

  AssumeV=LSupposeMisatransitivesetandthat

  Χ≺M

  isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.

  AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.

  Χ≅Vα

  andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.

  ⇨TheseaxiocnsimplyV≠L.

  Stiongaxcmsofinfinity:largecardinalaxioms

  BzrJmpJateforlargecardinalaxioms

  Acardinalκisalargecardinalifthereexistsanelementaryembedding.

  j:V→M

  suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.

  ⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:

  ⇨simplestcaseiswhereκisameasurablecardinal.

  ⇨M=VcontradictstheAxiomofChoice.

  ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.

  ⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.

  Thehierarchyoflargecardinalaxioms-shortversion

  ⇨Thereisaproperclassofmeasurablecardinals.

  ⇨Thereisaproperclassofstrongcardinals.

  ⇨Thereisaproperclassofwoodincardinals.

  ⇨Thereisaproperclassofsuprstrongcardinals.

  …………………

  ⇨Thereisaproperclassofsupercompactcardinals.

  ⇨Thereaproperclassofextendiblecardinals.

  ⇨Thereaproperclassofhugecardinals.

  ⇨Thereaproperclassofw-hugecardinals.

  EnlargementsofL

  Deflnition

  SupposeEisaset(orclass).Then

  1.L₀[E]=∅.

  2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where

  Z=Lα[E]∪{E∩Lα[E]}.

  3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.

  ⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.

  ⇨lfE∩L=0thenL[E]=L

  ⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].

  ⇨ThisisequivalenttotheAxiomofChoice.

  Thebuildingblocksforinnermodels:Extenders

  supposethat

  j:V→M

  isarelementaryembeddingwithcniticalpointκ,κ<η.andthat

  Р(η)⊂M.

  The(strong)extcnderEoflengthηdcrivedfromj

  TheextenderEoflengthηdefinedfromjisthefunction:

  E:Р(η)→Р(η)

  whereE(A)=j(A)∩η.

  TwoordinalsassociatedtotheextenderE:

  ⇨CRT(E)=min{α丨E(α)≠α}=κ.

  ⇨LTH(E)=ηwheredocn(E)=Р(η).

  Largecardinalaxiomsintermsofextenders

  δ isastrongcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  CRT(E)=δandLTH(E)≥ γ.

  δisasupercompactcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  E(CRT(E))=δandLTH(E)≥γ.

  δisanextendiblecardinalif

  ⇨foreachγ>δ thereexistsanextenderEsuchthat

  CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).

  weakextendermodelsandextendermodels

  Foralargecardinalaxiom Φ:

  Deflnition

  AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat

  E=F丨N

  forsomeextenderF.

  ⇨lfΦholdsinVthenVisaweakextendermodelforΦ.

  Deflnition

  AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.

  ThelnnerModelprogram

  ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:

  Question

  Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?

  Theorem(Martin-Steel)

  Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.

  Theorem(Martin-Steel)

  SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.

  Beyondsuperstrong:theUniversalityTheorem

  Thcorem(UniversaΓtyTheorcm)

  SupposethatNisaweakextendermodelforδissupercompact.

  supposethatFisanextendersuchthat:

  ⇨CRT(F)≥δandNisclosedunderF.

  ThenF丨N∈N.

  ⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L

  ⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.

  Conclution

  TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel

  ⇨itmustyieldanultimateversionofL.

  Gödel’stransitiveclassHOD

  ⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.

  Deflnition

  Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:

  1.ΧisdefinableinVαfromordinalparameters.

  2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.

  ⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.

  OefinlenM(Gödel)

  HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.

  whatabutextendermodelsforsupercompactcardinals?

  Deflnition

  supposethatE=(Eα:α∈Ord)isasequence.

  ThenEisweakly∑₂-definableifthereisaformua φ(x)suchthatforallβ∈ord.

  ⇨for all β<η₁<η₂<η₃ .if

  (E)ᵛᵉˢ丨β=(E)ᵛᵉˢ丨β

  then(E)ᵛᵉ¹丨β=(E)ᵛᵉ²丨β=(E)ᵛᵉ³丨β.

  where(E)ᵛ⁷={a∈Vα丨Vγ╞φ [a]}.

  ⇨Thesequtnce(HOD∩Vα:α∈Ord)isweakly∑₂-dtfnable.

  Aseriousobstruction

  ⇨Assumethereisaproperclassofsupercompactcardinals

  Byclassforcingonecanarrangethatthefollowinghold

  1.V=HODandthereisaproperclassofsupercompactcardinals.

  2.SupposeEisanextendersequencesuchthat

  (a)L[E]isanextendermodelforδisasupercompact

  (b)Eisweakly∑₂-deflnable.

  ThenV⊆L[E].

  Ramiflcations

  RulesoutdeVelopingthelnnerModelprogramtothelevelofconstructingextendermodelsfor δ issupercompact.

  ⇨lnfactonecannotgobeyondtheMartin-Steelextendermodelsinanyessentialway.

  Рartial-extendersandpartial-extendermodels

  A partial-extender E of length η isobtainel from an elementary embedding.

  j:N→M

  whereN∩Р(η)=M∩Р(η):

  1.E has domain N∩P(η):

  2.E(A)=j(A)∩η.

  Deflnition

  AtransitiveclassNisapartial-extendermodelsequenceEofpartial-extenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbythe ∽₁:alextendersonthesequenceE.

  Goodpertial-extendermodels

  ⇨Eveyweakextendermodelcanbere-organiIedasapartial-extendermodel.therefore:

  ⇨ReguireagererakIationoftheMostowskiCollapse.

  Defmition

  SupposeL[E]isapartial-extendermodel.ThenL[E]ispartial-extendermodelifforall

η<α.if

  X≺(Lα[E].E∩Lα[E])

  istheelementarysubstructuregivenbytheelementswhicharedeflnablewithparametensfromηthen.

  Χ≅(Lᵦ[E].E∩Lᵦ[E])

  for some β.

  ⇨lfL[E]isagoodpartial-extendermodelthenthecontinuumHypothesisholdsinL[E].

  Mitchell-Steelmodels

  ⇨Thebasicframewcrkforgoodpartial-extendersmodelsforlargecardinalsuptothelevelofsuperstrongcardinalsoriginatesintheconstuctionsofMitchellandSteel.

  ⇨ThereisanimportantvaiationduetoJensenwhichisequivalentbutyiekjsmodelswithstrongercondensationproperties.

  Theeorem(MitchellSteeletal)

  Assumethereisaproperclassofwoodincardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofwoodincardinalssachthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Theorem(Mitchell-Steeletal)

  AssumetheltenationHypothesisandthatthereisaproperclassofsuperstrongcardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofsuperstrongcardinalssuchthat

  (1)Eisweakly∑₂-definable。

  (2)L[E]isagoodpartial-extendermodel.

  Conjecture

  AssumethelterationHypothesisandthatthereisanextendibiecardinal.Thenthereisapartial-extendermodelL[E]forasupercompactcardinalsuchthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Afirststep

  Theorem

  AssumethereisasupercompactcardinalandthatthelterationHypothesisholds.Thenthereisapartial-extendermodelL[E]suchthat

  (1)Eisweakly∑₂-deflnable。

  (2)L[E]isagoodpartial-extendermodel.

  (3)L[E]isaweakextendermodelfortheexistenceofκsuchthatκisκᵒⁿ-supercompactforalln<ω.

  ⇨Thetheoremshowsthattheobstructionscanbesuccessfullydealtwith.

  ⇨Theconstructionsseemtoindicatehowtohandlethegeneralcase.

  TheGeneric-Multiverse

  Definition

  SupposethatMisacountabletransitivesetandthat

  M╞ZFC.

  Thegeneric-multiversegeneratedbyMisthesmallestsetVᴍofcountabletransitivesetssuchthatforallpairs(N₀,N₁)ofcountabletransitivesetsif

  1.N₁isagenericextensionofN₀

  2.eitherN₀∈VᴍorN₁∈VᴍthenbothN₀∈VᴍandN₁∈Vᴍ.

  (meta)Definition

  TheGeneric-Multiverseisthegeneric-multiversegeneratedbyV.

  Mitchell-SteelmodelsandtheGeneric-Multiverse

  Lemma(V=L)

  VistheminimumuniverseoftheGeneric-Multiverse.

  Thcorem

  SupposeL[E]isan(iterable)Mitchell-Steelmodeland

  L[E]╞TbctelsawoodincardinΓ.

  ThenthereisaMitchell-SteelmodelL[F]⊂L[E]suchthatL[E]isageneΙcextensionofL[F].

  ThesametheoremappliestotheextensionofMitchell-Steelmodelsbeyondsuperstrong.

  lsUltimate-LageneralizedMitchell-Steelmodel?

  AssumetheHerationHypothesisholdsinVandthatthereisaproperclassofmeasurablewoodincardinals.

  ⇨ltisnotknownifthereexistsaMitchell-SteelmodelL[E]foraproperclassofmeasurablswoodincardinalswithinwhichEisdefinablecevenfromparameters).

  ⇨SupposeL[E]isaMitchell-Steelmodelwithinwhichthereexistsawoodincardinal.TheinductivefirstorderrequirementsonLα[E]arevtrycomplicated:

  ⇨thingsoelygetworseforthegentraliIedMitchel-Steelmodels.

  Twoquestions

  1.lsthereasimplecandidatefortheaxiomⅤ=Ultimate-L”?

  2.lsUltimate-Levenagoodpartial-extendermodel?

  UniversallyBairesets

  Definition(Feng-Magidoe-woodin)

  AsetA⊆RisuniversallyBaireifforalltopologicalspacesΩandforallcontinuousfunctions:Ω→R.thepreimageofAbyπhasthepropertyofBaireinthespaceΩ.

  ⇨UniversallyBairesetsareanabstractgeneraliIationoftheborelsets.

  Theorcm

  SupposethatthereisaproperclassofwoodincardinalsandthatA⊆RisuniversallyBaire.Theneveryset

  B∈L(A,R)∩Р(R)

  isuniversallyBaire.

  HODᴸ(ᴬᴿ)andlargecardinalaxioms

  Definition

  SupposethatA⊆RisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isthesupremumoftheordinalsαsuchthatthereisasurjection.π:R→α.suchthatπ∈L(A,R).

  ⇨Θᴸ(ᴬᴿ)isameasureofthecomplexityofA.

  Relnrme

  SupposethatthereisaproperclassofwoodincardinalsandthatAisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isawoodincardinalinHODᴸ(ᴬᴿ).

  HODᴸ(ᴬᴿ)andthelnnerModelprogram

  Theorcm(Steel)

  Supposethatthereisaproperclassofwoodincardinalsandletδ=Θᴸ(ᴿ).

  ThenHODᴸ(ᴿ)∩VδisaMitchell-Steelmodel.

  Theorcm

  Supposethatthereisaproperclassofwoodincardinals.

  ThenHODᴸ(ᴿ)isnotaMitchell-Steelmodel.

  Thereisanotherclassofsolutionstotheinnermodelproblemforlargecardinals.

  ⇨strategicpartial-extendermodels

  ⇨previouslyuhknown.

  TheaxiomforV=Ultimate-L

  (meta)Conjecture:TheaxiomforV=Ultimate-L

  ⇨Thereisastrongcardinalandaproperclassofwoodincardinals.

  ⇨Foreach∑₃-sentence φ,if φ holdsin V thenthereisauniversallyBairesetA⊆Rsuchthat

  HODᴸ(ᴬᴿ)∩VΘ╞φ

  where Θ=Θᴸ(ᴬᴿ).

  ⇨Theaxiomsettles(moduloaxiomsofinfinity)allsentencesaboutp(R)(andmuchmore)whichhavebeenshowntobeindependentbyCohen’smethod.

  Theorcm(V=Ultimate-L)

  TheComtinuumHypothesisholds。

  MoreconsequencesofV=Ultimate-L

  Theorem(V=Ultimate-L)

  Foreachcardinalκ.ifV[G]isaset-genericextensionofVthenthereexistsanelementaryembedding

  π:(H(κ¹))ᵛ→N

  u:kN+1(π,N)∈VandsuchthatN∈HODᵛ[ᶜ].

  corollary(V=Ultimate-L)

  V=HOD.

  corollary(V=Ultimate-L)

  Vistheminimumuniverse of the Generic-Multiverse.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
8.7万字2个月前
快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字2个月前
永远停驻于那个夏天吧 连载中
永远停驻于那个夏天吧
4000時
请关注四千时谢谢喵【自留oc向】第一次在话本写东西!这是纯oc向的小说てす!一起去鬼屋探险吧!杂乱剧情注意‼️多结局注意❗️男频剧情️,女频......
0.7万字2个月前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字1个月前
际缘 连载中
际缘
清沐兮颜
0.3万字4周前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字4周前