数学联邦政治世界观
超小超大

Vitali Set的“病态性质”

Vitali Set(下文称维塔利集)是利用选择公理构造出的不满足实数子集正则性质(regularity property)的一个集合。其构造是这样的:令 ∼ 是 [0,1] 的等价关系,其中 x∼y↔∃q∈Q(x−y=q) ,令 ℜ={[x]:x∈[0,1]} ,其中 [x] 是等价类,不难看出 [x]≠[y]→[x]∩[y]=∅ ;根据选择公理,我们令 ν 是从每个等价类中挑选出的一个元素构成的集合,ν 就是一个维塔利集。显然 ν 有如下性质:第一,

x,y∈ν →∀q∈Q(x−y≠q) ;

第二,

∀x∈[0,1]∃!y∈ν∃!q∈Q(x−y=q) ;

第三, R=⋃q∈Q ν+q ,其中 ν+q={x+q:x∈ν} 。

定理 1 :维塔利集 ν 不是勒贝格可测集。

证明:假设 ν 可测,则 ν 要么是零测集要么测度大于零。如果维塔利集 ν 是零测集,那么根据可数可加性可得 μ(R)=μ(∑q∈Qν+q)=∑q∈Qμ(ν+q)=0 ,矛盾(注意 r,s∈Q∧r≠s 蕴含 (ν+s)∩(ν+r)=∅ );如果 μ(ν)=ϵ>0 ,那么 μ([−1,2])≥∑q∈Q∩[0,1]μ(ν+q)=∞ ,矛盾,反证 ν 不可测。 ⊣

定理 2 :维塔利集 ν 不满足Baire性质。

证明:Baire性质是指存在开集 G 使得 G△ν 是第一范畴集。如果 ν 满足Baire性质,那么存在 G=⋃ᵢ(αᵢ,bᵢ) 满足 G△ν 是第一范畴集(这是有实数集的拓扑性质决定的),因此必然存在 (α,b) 满足 (α,b)−ν 是第一范畴集。由于 q∈Q→(ν+q)∩ν=∅ ,因此 (α,b)∩(ν+q) 是第一范畴集,进一步得 (α−q,b−q)∩ν 是第一范畴集。由于 (α,b)∩ν⊆⋃q∈Q(α−q,b−q)∩ν ,因此 (α,b)∩ν 是第一范畴集,这就有 (α,b)=((α,b)−ν)∪((α,b)∩ν) 是第一范畴集,但是Baire证明了所有完备度量空间都是第二范畴集、

(R,d) 是完备度量空间且 R 和 (α,b) 拓扑同胚,因此 (α,b) 是第二范畴集,矛盾,反证 ν 不满足Baire性质。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

他说自己很棒 连载中
他说自己很棒
切迷
谨慎观看☝
0.6万字3个月前
沐心归尘 连载中
沐心归尘
岑夏仲月
死去多年的混沌时代前最强者沐汐突然重生为人,并遇到无心的尘归,二人一见钟情,那么接下来会发生什么呢?
8.8万字3个月前
谢绝凌 连载中
谢绝凌
白芷沂
在这个宇宙中,女主角就如同那破晓前的孤星,身披一袭神秘的面纱,让人难以捉摸。似乎命运之神特意为她安排了一场跌宕起伏的剧本,她的故事像是一首待......
1.7万字2个月前
结良 连载中
结良
妻华
两个人相爱的故事
4.3万字2个月前
景西苑 连载中
景西苑
桉婕大树
不喜勿喷,四男主,修仙+重生司景与顾悬等人携手修仙,在终于成神之际,两人双双陨落,却受到了魔界的影响,重回人世间。这时,洛衍西出现了,在司景......
1.0万字2个月前
都是命运 连载中
都是命运
小悦悦_3544233520332044
花翎作为天界唯一的神明,却踏上了一个又一个的挑战
0.4万字2周前