数学联邦政治世界观
超小超大

Vitali Set的“病态性质”

Vitali Set(下文称维塔利集)是利用选择公理构造出的不满足实数子集正则性质(regularity property)的一个集合。其构造是这样的:令 ∼ 是 [0,1] 的等价关系,其中 x∼y↔∃q∈Q(x−y=q) ,令 ℜ={[x]:x∈[0,1]} ,其中 [x] 是等价类,不难看出 [x]≠[y]→[x]∩[y]=∅ ;根据选择公理,我们令 ν 是从每个等价类中挑选出的一个元素构成的集合,ν 就是一个维塔利集。显然 ν 有如下性质:第一,

x,y∈ν →∀q∈Q(x−y≠q) ;

第二,

∀x∈[0,1]∃!y∈ν∃!q∈Q(x−y=q) ;

第三, R=⋃q∈Q ν+q ,其中 ν+q={x+q:x∈ν} 。

定理 1 :维塔利集 ν 不是勒贝格可测集。

证明:假设 ν 可测,则 ν 要么是零测集要么测度大于零。如果维塔利集 ν 是零测集,那么根据可数可加性可得 μ(R)=μ(∑q∈Qν+q)=∑q∈Qμ(ν+q)=0 ,矛盾(注意 r,s∈Q∧r≠s 蕴含 (ν+s)∩(ν+r)=∅ );如果 μ(ν)=ϵ>0 ,那么 μ([−1,2])≥∑q∈Q∩[0,1]μ(ν+q)=∞ ,矛盾,反证 ν 不可测。 ⊣

定理 2 :维塔利集 ν 不满足Baire性质。

证明:Baire性质是指存在开集 G 使得 G△ν 是第一范畴集。如果 ν 满足Baire性质,那么存在 G=⋃ᵢ(αᵢ,bᵢ) 满足 G△ν 是第一范畴集(这是有实数集的拓扑性质决定的),因此必然存在 (α,b) 满足 (α,b)−ν 是第一范畴集。由于 q∈Q→(ν+q)∩ν=∅ ,因此 (α,b)∩(ν+q) 是第一范畴集,进一步得 (α−q,b−q)∩ν 是第一范畴集。由于 (α,b)∩ν⊆⋃q∈Q(α−q,b−q)∩ν ,因此 (α,b)∩ν 是第一范畴集,这就有 (α,b)=((α,b)−ν)∪((α,b)∩ν) 是第一范畴集,但是Baire证明了所有完备度量空间都是第二范畴集、

(R,d) 是完备度量空间且 R 和 (α,b) 拓扑同胚,因此 (α,b) 是第二范畴集,矛盾,反证 ν 不满足Baire性质。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

皇帝的狐狸不好惹 连载中
皇帝的狐狸不好惹
嫣栀
一个是云狐山第一纨绔的狐仙云祁,平日里不是拔族长的胡子挖族长的酒,就是带着三只小狐狸去揍临山的妖兽顺带抢他们的灵果。一个是毫无权势被架空的废......
8.7万字2周前
惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
218.4万字2天前
团宠:有五个不熟悉的哥哥怎么办? 连载中
团宠:有五个不熟悉的哥哥怎么办?
悦雪风吟
作为一个身体不好的小孩子,爸妈为了让她养好身体,带她回到了山上的奶奶家,与奶奶父母一起生活,彼时大哥已经完全有能力接管公司,父母便安心照顾她......
1.2万字2周前
all源:疯批实验体 连载中
all源:疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.7万字3天前
归魂渊 连载中
归魂渊
冰霜之间
有花无叶,有叶无花,永生永世,无法相见,生生不息,轮回不止,悲剧之爱,曼珠沙华。
3.8万字2天前
雾灵念学院 连载中
雾灵念学院
雪酷
全职猎人的现象系番外,没有特定的主角
1.3万字昨天