数学联邦政治世界观
超小超大

特殊篇章(数学解释)九

L[U]中的GCH

我们之前在文章中证明了:如果 V=L[A] ,那么GCH在某个足够大的序数 γ 中成立。这个定理可以进一步的加强:假设 U 是可测基数 κ 的正规完备超滤且 V=L[U] ,那么 L[U]⊨GCH 。

证明:反证法,假设 L[U] ⊨ 2θ>θ⁺ ,由于 L[U] 满足全局选择公理(global axiom of choice),因此可以定义 X 是第 θ⁺ 个 θ 的子集。令 α 是最小的满足 X∈Lα[U] 的序数,那么有 |𝕻(θ)∩Lα[U]|≥θ⁺ 。令 η>α 满足 U∈Lη[U] ,定义 P=𝕻(θ)∩Lη[U] ,由于所有可测基数都是Ramsey基数且 P(θ)<κ ,根据文章,存在模型 A≺Lη[U]满足: A∩κ∈U 、 |A∩P|≤θ 、 |A|=κ 和 {X,U,α}∪θ⊆A 。令 𝕭≅𝕬 且 B=π[A] ,根据凝聚性引理可得 B=Lᵦ[π(U)] ,下面证明 π(U)=U∩B :由于 A∩κ∈U ,因此 π(κ)=κ ;由于 U 是正规超滤,因此 π(ξ)≤ξ ,那么 Y={ξ:π(ξ)=ξ}∈U ,现在假设 Z∈A∩U ,那么 π(Y∩Z)=Y∩Z∈U ,因此 π(Z)∈U∩B ,所以 π(U)=U∩B 。由于 π(U)=U∩B ,因此 B=Lᵦ[U∩B] ,即 B=Lᵦ[U] 。

由于 θ⊆B ,因此 Y∈𝕻(θ)∩A → π(Y)=Y∈B ,则有 |B∩P|≤θ ,但这是一个矛盾:一方面, π(X)=X∈B ,由 α 的极小性可得 α≤β ,则 |Lᵦ[U]∩𝕻(θ)|≤θ ;另一方面有 |𝕻(θ)∩Lα[U]|≥θ⁺ ,矛盾,反证定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦:我的一百零一个梦 连载中
梦:我的一百零一个梦
聪明的呆子
他们说,梦里梦到的人,现实就见不到了如果我说我不信呢,我一定会见到你的
0.6万字4个月前
溺于夏海 连载中
溺于夏海
颜笙_17007168380330353
我从小就是不幸的人,我的不幸换来了他的出现,可阳光永远不会在我身上停留太久,我会追逐阳光,可每次只差一步
1.8万字3个月前
落魄小宗竟全是大佬 连载中
落魄小宗竟全是大佬
栖休安
白漠渴望得道长生于是她来到来了一个小宗门(排雷:女主傻白甜,文中有多对楠楠副cp,全员be)
7.9万字2个月前
神修大陆 连载中
神修大陆
唐朝汐
在这个神修的大陆,法术强者为王的大陆上,有无数宗门和学院,可是有这么一个宗门他们以蝶为主,以音为辅,以扇为攻,宗门里的亲生血脉者刚会有一种特......
8.0万字2个月前
排球:姓名 连载中
排球:姓名
AAA掺水苏威瓷兔批发商
涉及排球少年,未定事件簿孤爪研磨+北信介+赤苇京治+佐久早圣臣爱情向梦女+穆子悠亲情向梦女有梦图,谷子,此是梦文【请注意避雷,雷者左上角划走......
0.6万字2个月前
三世情缘之重生后我竟成了仇敌首徒 连载中
三世情缘之重生后我竟成了仇敌首徒
洛安歌
一万年前,他们是伴侣却不得善终。第二世他们没认出彼此站在对立面。今生为师徒。在仇恨与爱慕之情徘徊,难以抉择。
2.8万字1周前