数学联邦政治世界观
超小超大

特殊篇章(数学解释)十三

无端点线性稠密序不是κ范畴的

我们称一个可数语言的理论 T 是 ω 范畴的,当且仅当,对于任意可数模型 N,M ⊨ T 都有 M≅N 。

定理:无端点线性稠密序理论 T 是 ω 范畴但不是 κ 范畴的,其中 κ>ω 。

证明:不妨假设 κ=c 。由于 ℝ⊨T 且 |R|=c ,我们就用实数集 R 来证明定理(如果 κ<c 的话,向有理数集中加入 κ 个无理数就好)。任选 f∈2ω ,定义 f′=∏ₙ<ω{n}×𝕬f(ₙ) ,其中 𝕬₀=Q 且 𝕬₁=R ;定义 f′ 上的字典序为: (i,α)<f′(j,b) 当且仅当 i<α 或者 i=j∧α<𝕬f(ᵢ)b 。 f′ 可以理解为将 ℚ,ℝ 按照 f 规定的次序串接起来。不难看出 f′ 仍然是无端点线性稠密序。

下面证明有 c 个不同构的 f′ 。首先注意到 ℝ 并不同构于 2 个 R 的串接,即 ℝ≇{(0,r),(1,s):r,s∈R}=𝓞 :如果 ℝ≅𝓞 ,令 f:𝓞 → ℝ 是同构映射,那么存在 α∈R 满足 ∀r∈R,f(0,r)<α ;由于实数集的完备性,设 α 是 {f(0,r):r∈R} 的上确界,此时无论 ∃r∈R,α=f(0,r) 还是 ∃r∈R,α=f(1,r) 都与 R 是无端点线性稠密序矛盾,因此 ℝ≇𝓞 (这就是为什么我们特意选用 ℝ 而不是任意基数为 c 的无端线性稠密序, ℝ 的序完备性真的好用;注意到这里我们已经证明了 T 不是 c 完备的了)。用相同方法可证 ℝ 不同构于 δ 个 R 的串接,其中 2 ≤ δ ≤ ω 。其次注意到任意可数个有理数集的串接仍然是可数稠密集、仍然与有理数集同构,因此不妨把 δ 个有理数集的串接看作是一个有理数集,其中 2 ≤ δ ≤ ω 。根据这两个引理不难看出 c 个不同构的 f′ ,定理成立。 ⊣

引理:假设 𝕸 是非标准算术模型,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序、ℤ 是整数集。

证明:只需证明 𝕺 的稠密性。任选两个 ℤ 链 Z₁,Z₂ 且 Z₁ 在 Z₂ 之前,任选 c₁∈Z₁,c₂∈Z₂ ,不妨设 c₁,c₂ 都是偶数,那么 c₁<

c₁+c₂ c₁+c₂

────<c₂且 ────∉Z₁,Z₂,那么

2 2

c₁+c₂

────

2

所属的 ℤ 链就在 Z₁,Z₂ 之间,因此 𝕺 稠密。 ⊣

定理:假设 𝕸 是非标准算术模型且 |𝕸|=c ,那么 𝕸≅N∗(𝕺×ℤ) ,其中 ∗ 表示串接、 𝕺 是一个无端线性稠密序且 |𝕺|=c 但 𝕺 ≇ ℝ、 ℤ 是整数集。

证明:如果 𝕺≅ℝ ,现在任选非标准自然数 m ,注意到 {k×m:k∈ω} 在 𝕸 中有上界,因此存在实数 r 和对应的 ℤ 链 Zᵣ 满足 ∀x∈Zᵣ∀k(k×m<x) ,令 r 是所有这样的实数中最小的那个,注意到此时没有非标准自然数 n 满足 n×m>x ,其中 x∈Zᵣ 。任选 z∈Zᵣ 满足 m 不整除 z (尽管 z 大于所有 k×m ,但仍可能有非标准自然数 n 满足 n×m=z ),定义公式 ψ(x) 为“ x×m<z ”,那么 ψ(x) 就在 𝕸 中定义了自然数集,这与自然数集不可定义性矛盾,反证 𝕺 ≇ ℝ。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

永远停驻于那个夏天吧 连载中
永远停驻于那个夏天吧
4000時
请关注四千时谢谢喵【自留oc向】第一次在话本写东西!这是纯oc向的小说てす!一起去鬼屋探险吧!杂乱剧情注意‼️多结局注意❗️男频剧情️,女频......
0.7万字5个月前
快穿:开个阴魂店 连载中
快穿:开个阴魂店
人类百分百
来此店的亡魂必然都有怨恨。说出你的故事,并提出要求,“我”会帮你实现。故事虚构,封面素材来源网络
0.7万字5个月前
你好,大妖 连载中
你好,大妖
这条小鱼在乎捏
我是一个半人半妖的妖怪我出生就被诅咒过所以我父母就不要我了丢给了我师傅白泽但是师傅说以后会一只大妖叫乘黄的非常爱我爱我?为什么也要丢下我?
0.8万字5个月前
我的太阳只为她而亮 连载中
我的太阳只为她而亮
杜杜要加油
女主月霜雪为了保护腹中的孩子而死,男主去时已晚,悲痛欲绝的他,使用尘封已久的禁忌法术,已自己的生命为代价倒流时间,来到过去,改变未来。
1.3万字2个月前
西幻:大小姐的抽卡生涯 连载中
西幻:大小姐的抽卡生涯
渣渣羽
【无cp】+【西幻】+【抽卡系统】+【穿越】+【少女漫】+【微无敌流】池念穿越了,穿进了一本名叫《灰姑娘的复仇生涯》的打着大女主标签的玛丽苏......
1.0万字2个月前
他是姐姐 连载中
他是姐姐
莫昕染
神的世纪结束了,可偏偏留下了永远的神,为了打破弑神所背负的诅咒,为了对抗新世纪“神”的统治,一体双魄的周思语为收集上古神物血珠所牵扯出一系列......
8.7万字2周前