数学联邦政治世界观
超小超大

(数学定理)钻石原则

钻石原则 ◊ 是指存在钻石序列 ⟨Sα:α<ω₁⟩ 满足 1.Sα⊆α 和

2.∀X⊆ω₁({α:X∩α=Sα}是ω₁稳定集) ,不难看出 ◊ → CH :任选 X⊆ω ,由于 {α∈ω₁:X∩α=Sα} 是 ω1 稳定集,因此存在 α>ω 满足 X=X∩α=Sα ,令 f(X)=min{α:X=Sα} ,则 f 是 Pω → ω₁ 的单射。

下面我们证明 V=L → ◊ ,该定理最早由数学家Jesen证明。

证明:注意到钻石序列的否定形式:存在 X⊆ω₁ 和 ω₁ 的无界闭集 C 满足 α∈C → X∩α≠Sα ,以及 L 满足的两个重要性质: AC 和凝聚性引理。

先在 L 中定义一个钻石序列:令 ⟨S₀,C₀⟩ 满足 S₀=C₀=∅ ;假设 ⟨Sα,Cα⟩ 以及定义,令 Sα₊₁=Cα₊₁=α+1 ;假设 α 是极限序数且 ⟨Sᵦ,Cᵦ⟩,β<α 已经定义,令 ⟨Sα,Cα⟩=min<ʟ{⟨A,B⟩:ψ(α,A,B)} ,其中 ψ(α,A,B) 当且仅当 A ⊆ α 、 B 是 α 的无界闭集且 ∀β∈B,(A∩β≠Sᵦ) ;如果这样的 ⟨A,B⟩ 不存在,那么令 Sα=Cα=α 。递归可得序列 ⟨Sα:α<ω₁⟩ 。根据凝聚性引理,不难看出上述构造在 Lω₂ 以内即可完成。下面证明此为钻石序列:

反证法,假设 ⟨Sα:α<ω₁⟩ 不是钻石序列,那么存在 X ⊆ ω₁ 和 ω₁ 的无界闭集 C 满足 ∀α∈C,(X∩α≠Sα) ,令 ⟨X,C⟩ 是满足上述要求的 <ʟ 下最小元。令可数模型 M 满足 {⟨X,C⟩,⟨Sα:α<ω₁⟩,ω₁}⊆M≺Lω₂ (注意不是 ω₁⊂M 而是 ω₁∈M )。令 A=M∩ω₁ ,由于 M ⊨ ∃γ(γ={x:x∈ω₁}) 且

M ⊨ γ是序数 ,根据 M≺Lω₂ ,那么Lω₂ ⊨ γ是序数 ,因此 A=γ ;同时,因为 M ⊨ C是无界闭集 和 M ⊨ C在γ之下无界 ,根据 M≺Lω₂ ,因此 γ∈C 。令 π:M → Lδ 为坍缩映射,那么有 π(ω₁)=γ 、 π(X)=X∩γ (假设 γ∈η∈X∧η∈M ,那么 π(η)∈γ ,但这与 π 是单射且 ∀x∈γ(π(x)=x) 矛盾,因此 η∉M ,则有 π(X)=X∩γ )、 π(C)=C∩γ (与上同理)、 π(⟨Sα:α<ω₁⟩)=⟨Sα:α<γ⟩ (这是因为 Sα ⊆ α<γ )。由于 π 是同构映射且 M 满足“ ⟨X,C⟩ 是满足 ∀α∈C,(X∩α≠Sα) 的 <ʟ 下最小元”,因此 Lδ 满足“ ⟨X∩γ,C∩γ⟩ 是满足 ∀α∈C∩γ,(X∩α≠Sα) 的 <ʟ 下最小元”。由于 π(C)=C∩γ 是 γ 的无界闭集,因此 C∩γ=Cᵧ 且 X∩γ=Sᵧ ,但这与 ∀α∈C,(X∩α≠Sα) 和 γ∈C 矛盾,反证定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

最后让我在看ta 连载中
最后让我在看ta
南屿崽
我是林川,永远爱着别人31的林川的想问29岁的林川,值得吗?我就是我,谁都替代不了四季的轮回,我们还会在见面的最后在看ta,看的是她还是他记......
10.8万字4个月前
童话怪谈:暗影中匍匐 连载中
童话怪谈:暗影中匍匐
千秋月yue
【无限流+怪谈+规则+中世纪童话+无cp+微群像+微恐】月亮泛着阴霾,噼啪作响散发热气的炉火旁吟诵着古老的童话故事的声音戛然而止。规则怪谈降......
1.1万字2个月前
排球:姓名 连载中
排球:姓名
AAA掺水苏威瓷兔批发商
涉及排球少年,未定事件簿孤爪研磨+北信介+赤苇京治+佐久早圣臣爱情向梦女+穆子悠亲情向梦女有梦图,谷子,此是梦文【请注意避雷,雷者左上角划走......
0.6万字2个月前
777号玻璃树:属于我们的世界幻想 连载中
777号玻璃树:属于我们的世界幻想
*夜半太阳*
有关于维持世界时空的失落之石遭到破坏爆炸导致世界重组后,发生在一个先进的信息文明,以玻璃树作为主角视角的探索故事
0.5万字2个月前
曹氏饿了么集团商业帝国 连载中
曹氏饿了么集团商业帝国
海豚_92425688407329648
本书主要讲,曹氏家族企业1路发展到商业帝国。
0.8万字2周前
远离老婆后,老婆反向表白 连载中
远离老婆后,老婆反向表白
司逢春
美术室的白颜料染红色那天,林轩攥着司烨逐渐冰凉的手,听他吐出最后一句:
0.6万字1周前