数学联邦政治世界观
超小超大

ZFC的传递模型M和N若有相同的序数子类,那么M=N

证明:定义 Mα={x∈M:x∈Vα} ,不难看出 Mα 是传递集。由于 M 是 ZFC 传递模型,因此存在序数 β 满足 (β,E)≅(Mα,∈) ,其中 E 是 β 上的二元关系。下面定义配对函数 Γ(α,β) : Γ(α,β):Ord² → Ord 且满足 Γ(x,y)<Γ(α,b) 当且仅当 x,y 的最大值小于 α,b 的最大值、如果最大值相等那么比较 x 和 α 、如果最大值相等且 x=α 那么 y<b ;换言之,先比最大值、再比第一个分量、最后比第二个分量。由于配对函数是可定义的,因此 Γ[E]⊂Ord∧Γ[E]∈M 。由于 M 和 N 有相同的序数子类,因此 Γ[E]∈N ,这样二元关系 E 也属于 N 。根据莫斯托夫斯基坍缩定理可得 Mα∈N ,这样 M 是 N 的子集,反过来 N 也是 M 的子集,因此定理成立。

推论:假设 M,N 是 ZFC 的内模型,且 M,N 有相同的有界序数子集,那么 M=N 。

证明:考虑到 Mα 对应的序数子集必然有界,那么根据定理可得推论成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

宠,唯爱一生 连载中
宠,唯爱一生
爱吃香草大富婆
人的一生有很多选择,如果让你有机遇你愿意踏入吗?一个规则的制定者,一个规则下的遵守人,如何擦出火花。请问瓦洛克先生愿意娶文文女士,执子之手与......
6.2万字3个月前
走吧,赚钱(名字:驱死病害) 连载中
走吧,赚钱(名字:驱死病害)
烂人王
【双男主】【黑暗】【刀子多】【死亡】【多CP但还算正经】【要素较多】(我不会做小说插图)《五胡乱华》《甲午战争》《克里米亚战争》《第一次世界......
0.9万字3个月前
夏芊月与魔法传说 连载中
夏芊月与魔法传说
猫忆蝶
讲的是一位少女,通过自己的努力,慢慢变强的故事
0.7万字3个月前
我嘞个豆啊循环 连载中
我嘞个豆啊循环
云开半雾
以后再说吧反正剧情自我感觉良好哈只是文笔不太好如果有人看可以看见意想不到的反转哈
0.9万字2个月前
重逢及相识 连载中
重逢及相识
Luan鸾梨
全都是作者幻想的,与实际不符,勿喷,作者新手小白,文笔不算多好既然我们别来无恙,那么就别过了吧下一次重逢即是相识--------------......
0.3万字2个月前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有十位主角,五位男生,五位女生。不要把其他人当配角看,重复一遍“十位主角”。
3.2万字1个月前