数学联邦政治世界观
超小超大

Stone-Weierstrass定理(数学解释)二

介绍:Stone对Stone-Weierstrass定理证明的原始想法

Stone-Weierstrass(SW)定理的一种版本表述如下:令 X 为紧Hausdorff空间, A 为连续函数代数 C(X)=C(X,R) 的一个subalgebra且包含identity。假设 A 分离 X 的点(即对任意不同的两点 x,y∈X 存在 f∈A 满足 f(x)≠f(y) ),则 A 在 C(X) 中稠密。

如今我们在教科书上看到的SW定理的证明其实也是Stone本人在1948年的文章The Generalized Weierstrass Approximation Theorem(以下简称GWAT)中给出的证明。很可惜,Stone在GWAT中提到过这个证明思路背后的动机,在我所知道的各种教科书中一概被抹去了,导致了教科书中呈现出来的证明虽然简短但如同炫技一般:列出若干小步,每一步书本告诉你应该证明什么之后,对这一步的证明并不复杂。但就是会给读者一种“怎么知道能拆成这几个小步呢,这每一步的目标又是怎么想到的呢”的困惑。

SW证明套路如下:首先承认函数 |x| 在紧区间上能够被多项式逼近。这就证明了若 f,g∈A ,则 max{f,g}=(|f+g|+f−g)/2 在 A 的闭包 A¯ 中。因此,只需要令 B 是包含 A 且对 max 封闭的最小线性子空间,然后证明 B 在 C(X) 中稠密就行。接下来就是一通谁也不知道怎么想到的对B稠密性的证明。

这里我想解释的问题是,Stone是怎么想到把 A 的稠密性问题转换成 B 的稠密性问题,并且认为证明后者是有希望得证的。实际上,Stone在GWAT里说的很清楚:首先考虑 X=[α,b] 且 B 是包含所有形如 αx+β 的函数(即线性函数)且对 max 封闭的最小线性子空间。此时,证明B的稠密性其实就是证明连续分段线性函数在连续函数代数中稠密:这是很初等的。

从这一点看,Stone给出的SW定理的一般论证,无非就是把单变量的连续分段线性函数换成了多变量的连续分段线性函数:我们先假设 X 是 ℝᴺ 的紧子集,且 A 是N个变量的多项式代数。则证明 A 的稠密性转换成了证明 B 的稠密性,其中 B 是包含1,x₁,…,xɴ且对 max 封闭的最小线性子空间。那么 B 中的元素实际上就是所有N变量的连续分段线性函数。这时对SW定理的证明,不过是转化成了对“多变量连续函数能够被连续分段线性函数逼近”这一事实的证明。这个证明过程虽然因为维数的增高而不是一目了然(实际上它也构成了SW定理的证明过程中最技术性的部分),但至少我们直觉上能相信它是不难证明出的。想象函数图作为一个曲面,被一些拼接起来的多边形逼近,这不直观吗?

于是,一般情况下的SW定理的证明,不过是把有限个变量 x₁,…,xɴ 换成无限多个变量,即 A 中的所有函数,然后把这些函数类比成坐标函数,考虑这些函数构成的“所有连续分段线性函数”罢了。“ A 分离 X 的点”,其实就意味着 A 中的所有元素全体可以构成一组坐标。分离点和构成坐标,这两件事对于紧Hausdorff空间来说差不多是同义的。

几行文字就能把定理证明背后的motivation说清楚,可是众多教材都节省篇幅不说,让SW定理的证明完全成为了一个纯技术性的证明,实在是可惜。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

疯批美人他权势滔天 连载中
疯批美人他权势滔天
权天官
疯批美人摄政王VS高冷正义小徒弟书又名:《知途》温使墨从一个人人喊打的丧家之犬,和从尸山血海里爬出来的厉鬼,成为如今人人喊骂,却人人畏惧的摄......
0.2万字6个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字5个月前
半心遗音 连载中
半心遗音
岑笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.2万字4个月前
性格缺陷 连载中
性格缺陷
Le néant
【架空世界,双男主,1V1】男主喝了副作用最小的实验体,后期会很强。脑洞可能会有点奇怪,无厘头,男主不善良,有时候可能会有点小阴暗,甚至可能......
22.4万字3个月前
复仇之途 连载中
复仇之途
有亿点物质
器宗被灭,百里辰竹四人找到苏浅陌寻求庇护
4.5万字2个月前
寂暗梦回 连载中
寂暗梦回
黎池念
你觉得你现在处的世界是真实的,还是在一场游戏中?亲爱的玩家,你不觉得现在的生活太无趣了吗?和我一起来参加这场有趣的游戏吧~
8.4万字3周前