数学联邦政治世界观
超小超大

Kleene-Brouwer序的一个定理

Kleene-Brouwer序(下面简称<ᴋʙ )是定义在 A<ω 上的一个序, <ᴀ 是 A 上的良序。 <ᴋʙ 定义如下: s<ᴋʙt 当且仅当 s⊃t∨s(δ(s,t))<ᴀt (δ(s,t)) ,其中δ(s,t)=min{n:s(n)≠t(n)}。

我们称T ⊆ A<ω 是well-founded当且仅当 [T]=∅,换言之 T 没有无穷枝(infinity branch),否则我们称 T 是ill-founded。

定理:<ᴀ 是 A 的良序,那么 (T,<ᴛ) 是well-founded当且仅当 (T,<ᴋʙ) 是良序。

证明:假设(T,<ᴛ) 是well-founded,那么 T 没有无穷枝,即每个枝都有terminal: ∀s∈T∃t∈T(s<ᴛ t∧¬∃t'∈T(t<ᴛ t'))。下面证明 (T,<ᴋʙ) 是良序:任选 S ⊆ T ,定义 S' 是 S 的全体terminal,定义 ф⁰={s∈S':∀t∈S',(s(0)≤ᴀ t(0))} ,规定 фⁿ⁺¹={s∈фⁿ:∀t∈фⁿ,(s(n+1)≤ᴀ t(n+1))} ,不难看出 фⁿ⊇фⁿ⁺¹ 。如果 ∀n(фⁿ≠∅) ,可证 (T,<ᴛ) 有无穷枝,矛盾,反证 ∃n(фⁿ=∅) ,令 n₀ 为最小的 фⁿ=∅ 的自然数。由于 фⁿ⁰⁻¹≠∅ ,只需从中选出 s∈фⁿ⁰⁻¹ 满足 ∀t∈фⁿ⁰⁻¹ ,(s(n₀)≤ᴀ t(n₀)),这个 s 即为S 在 <ᴋʙ 下的最小元。

假设(T,<ᴛ) 是ill-founded,那么 t₀<ᴛ t₁<ᴛ· · · 是一个无穷枝,此时有 t₀>ᴋʙ t₁>ᴋʙ · · · ,那么 <ᴋʙ 有无穷递减链,显然不是良序,定理成立。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

星灵幻影 连载中
星灵幻影
晨曦_51327356096082374
一个女孩的神奇之旅
0.7万字1年前
虚假的象牙塔 连载中
虚假的象牙塔
趁醉眠
“当我让他的画享誉世界时,我将取走他的生命——毕竟伟大的作品,是不可再生的,不是吗?”这是理想的象牙塔,也可以是一本充满欲望的故事书贪婪的饕......
0.3万字11个月前
檀香似忆苦思甜 连载中
檀香似忆苦思甜
邓槿陌
“若这是我的命,我愿意承受,就算不是她,我也要去,也因为有她,有我所爱所亲,所以,我才如此坚定。”对不起…叶梓瑾,中萃山的海棠开了,你,一定......
64.6万字10个月前
谢绝凌 连载中
谢绝凌
白芷沂
在这个宇宙中,女主角就如同那破晓前的孤星,身披一袭神秘的面纱,让人难以捉摸。似乎命运之神特意为她安排了一场跌宕起伏的剧本,她的故事像是一首待......
2.4万字10个月前
穿越虚拟和现实你和我(甄彩云板) 连载中
穿越虚拟和现实你和我(甄彩云板)
甄彩云
目前“虚实之间的情感迷局现实:避...”表意不太完整。可以丰富为“在虚拟与现实的边界徘徊,主人公陷入复杂情感迷局,现实的逃避与虚拟的诱惑相互......
43.6万字5个月前
那棵树下的我们 连载中
那棵树下的我们
栀子花开._09326599376420
现代奇幻哈
0.1万字4个月前