数学联邦政治世界观
超小超大

朴素集合论还有什么问题?

前提:朴素集合论认为任何语句P(x)都可以组成一个集合.

1) Curry Paradox

令X={x|x∈x → 0=1}.我们做出如下推理:

1.X={x|x∈x → 0=1}这个是X的定义

2.x=Ⅹ → (x∈x ↔ X∈X)这个是等价置换

3.x=X → ((x∈x → 0=1) ↔ (X∈X → 0=1)这个是2的弱化

4.X∈X ↔ (X∈X → 0=1)这个是X的定义

5.X∈X → (X∈X → 0=1)这个是4的半边

6.X∈X → 0=1这个是根据5以及 p → (p → q) ⊢ p → q

7.(X∈X → 0=1) → X∈X这个是4的另外一个半边

8.X∈X这个根据6和7得出

9.0=1 这个根据6和8得出.

2) Paradox of Grounded Sets:

称一个集合x为groundless, 当且仅当存在一系列的集合x₁,x₂,. . .,xₙ 使得 . . . ∈ xₙ₊₁ ∈ xₙ ∈ xₙ₋₁ ∈. . .∈ x₂ ∈ x₁ ∈ x.一个集合为grounded当且仅当它不为groundless. 我们令P(x)为"x is grounded", 并且考虑 y={x|P(x)}.

问题: y是不是一个grounded set?

如果是的话, 那么根据定义, y属于y. 所以 . . .∈y∈y∈. . . ∈y∈y 此时根据定义, y不是一个grounded set. 得到矛盾. 如果y不是grounded set, 则存在一系列的集合 y₁,y₂,. . .,yₙ 使得 . . .∈ yₙ₊₁ ∈yₙ ∈yₙ₋₁ ∈. . . ∈ y₂ ∈y₁ ∈y. 那么可得 y₁ 为groundless set. 但是根据定义, y只包含了grounded sets, 所以得到矛盾.

3) Paradox of Non-circular Sets:

对于任意自然数n, 称一个集合为n-circular, 当且仅当存在集合 x₁,x₂,. . .,xₙ₋₁,使得x ∈ xₙ₋₁ ∈ xₙ₋₂ ∈. . .∈x₂∈x₁∈x . 称一个集合x为circular, 当且仅当存在自然数n使得x为n-circular. 一个集合为non-circular当且仅当它不为circular. 令P(x)作"x is non-circular", 并且考虑 y={x|P(x)}

问题: y是不是non-circular set?

假设是: 则y∈y,所以y为1-circular. 得到矛盾

假设不是: 则y为circular, 所以存在集合y₁,y₂,. . .,yₙ₋₁ 使得 y∈yₙ₋₁ ∈ yₙ₋₂∈. . .∈y₂ ∈ y₁∈y .若n=1, 我们则有 y∈y,因为y只包含non-circular的集合, 所以得到矛盾. 若n>1, 我们则有 y₁∈y∈yₙ₋₁ ∈ yₙ₋₂ ∈. . .∈y₂ ∈ y₁ ∈y,所以 y₁ 为circular,并且 y₁ ∈ y . 这与y的定义矛盾.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三生三世十里桃花(2) 连载中
三生三世十里桃花(2)
💍💍冰花雨露🎀🎀👑👑
一声婴啼,一个新生命诞生了。从此天宫上又多了一个小公主,在她身上会发生什么事呢?
0.5万字3周前
叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字3周前
团宠:有五个不熟悉的哥哥怎么办? 连载中
团宠:有五个不熟悉的哥哥怎么办?
悦雪风吟
作为一个身体不好的小孩子,爸妈为了让她养好身体,带她回到了山上的奶奶家,与奶奶父母一起生活,彼时大哥已经完全有能力接管公司,父母便安心照顾她......
1.2万字2周前
疯子又来啦! 连载中
疯子又来啦!
星光曰月
天赐降福佑我族道却何曾手下留天道若不吾存留反了这天又如何回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是......
1.8万字5天前
来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字2天前
星灵幻影 连载中
星灵幻影
晨曦_51327356096082374
一个女孩的神奇之旅
0.7万字2天前