数学联邦政治世界观
超小超大

Full outer measure的定义

在一个Fσ集F ⊂ Xᶜ 使得

μ(F)=μ*(Xᶜ),定义G=Fᶜ,则G ⊃ X是一个Gδ 集,并且

μ*(G\X)=μ*(Xᶜ\F) ≤ μ*(Xᶜ) — μ(F)=0.

所以这个G便是要求的集合。

定义2:任给集合Y ⊂ X ⊂ [0,1],称Y在X上有full outer measure,当且仅当

env(Y)=env(X),即二者拥有相同的包络。

现在来验证几个关于这两个定义的等价命题。

命题1:集合G为集合X的包络当且仅当对任何borel集A ⊂ [0,1],有

μ(A∩G)=μ*(A∩X)。

首先,μ(A∩G) ≥ μ*(A∩X)是显然的。先证明从左到右,任取borel集A,假设μ(A∩G)>μ*(A∩X),来引出矛盾。取一个Gδ集E ⊃ A ∩ X 使得

μ(E)=μ* (A∩X),此时令

F=(A∩G)\E,可知F是borel的,而且因为μ(E)=μ*(A∩X)<μ (A∩G),所以μ(E)>0 。但是, 注意到

F=(B∩G)\E ⊂ (B∩G)\(B∩X)=B∩(G\X)

所以F ⊂ G\X,而μ*(G\X)=0,所以μ(F)=0,矛盾。

在来证明从右边到左边。考察μ*(G\X),任给闭集D ⊂ G\X,来证明

μ(D)=0。因为

μ(D)=μ(D∩G)=μ*(D∩X)=μ*(∅)=0.

所以μ*(G\X)=0。

命题2:定义2等价于:对任何borel集A ⊂ [0,1],如果 A∩X 是non-null的,则 A∩Y 是non-null的。

先来证明从左到右:取G为X和Y共同的包络。现固定任何borel集A,如果A∩X是

non-null的,即μ*(A∩X)>0,则由命题1可得:

μ*(A∩Y)=μ(A∩G)=μ*(A∩X)>0.

从而 A∩Y也是non-null的。

再来证明从右到左。任取G为X的包络,我们只需要证明G也为Y的包络即可。假设不然,即μ*(G\Y)>0,则存在Fσ集

H ⊂ G\Y,使得

μ(H)=μ*(G\Y)>0。但因为

H∩Y=∅.所以 H∩Y 是null的,由前提假设,这使得H∩X也是null的。然而根据

命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

命题3:定义2等价于:对于任何borel集

A ⊂ [0,1],如果A∩X是non-null的,则

A∩Y≠∅.

由命题2,左边蕴含右边是显然的。现在“证明右边蕴含左边。取G为X的包络,我们只需证明G也为Y的包络。实际上证明和命题2的充分性相似。假设G不是Y的包络,则存在Fσ集H ⊂ G\Y使得

μ(H)=μ*(G\Y)>0。但是此时

H∩Y=∅,运用充分性假设,我们有H∩X是null的。但是根据命题1,

0=μ*(H∩X)=μ(H∩G)=μ(H)>0,

矛盾。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

想要竹马甜甜的~ 连载中
想要竹马甜甜的~
九-儿
明明人家的时而霸道,时而温顺,可盐可甜,为什么我的竹马不一样?!在线等!急啊!!!
1.7万字9个月前
昼夜交替永不更迭 连载中
昼夜交替永不更迭
我爱五星红旗
玛琳·布莱克(阿尔法德·布莱克和某个不知名的美国麻瓜的女儿)平凡但并非没有波澜的一生。她是伊法摩尼的优秀学子,也是令联合国最头疼的员工,更是......
4.3万字8个月前
为卿慕久 连载中
为卿慕久
橘子糖欧尼
“我曾亲手斩断你的红线,故将自己赔你!”陈燃心虚…见慕久并没有发飙,添油加醋:“如果你跟他那红线当真无坚不摧,是不会断的…”听完,慕久内心跟......
0.2万字7个月前
深海遗梦(新) 连载中
深海遗梦(新)
南_002851970257522091
0.8万字3个月前
半心遗音 连载中
半心遗音
惬笺
主要讲述的是一个法器被众人抢夺的多元素小说,也有宫斗,剧情狗血,慎入
1.1万字2个月前
人生剧场 连载中
人生剧场
沐沐月惜
《人生剧场》是一部聚焦多元叙事的故事合集,以“故事”为核心载体,编织世间百态的戏剧化图景。全书突破传统单一主线框架,用独立成篇的短篇故事构建......
2.7万字2个月前