数学联邦政治世界观
超小超大

利用S_p证明Wilson定理

问题:p是素数,计算Sₚ,中Sylow p-子群的个数。由此证明Wilson定理:

(p – 1)!≡ —1 (mod p)。

题目几乎已经将证明方法写了出来。因为|Sₚ|=p!=p(p – 1)!,由于(p–1)!中没有素

因子p,由西罗定理,Sₚ 有p阶的西罗p-子群H,因为素数阶的群都是循环群,故每个西罗p-子群H=〈α〉,其中a是某个p元置换,且αᵖ=(1)。接下来的证明将会表明,a一定是某个p轮换。

对于任何一个n轮换σ=(α₁α₂ · · · αₙ),易知

σⁿ=(α₁α₂ · · · αₙ)ⁿ=(1),而且若

k<n,则 σᵏ(α₁)=αₖ₊₁≠α₁,所以

σᵏ≠(1),于是n轮换σ的阶为n。反过来,若一个n元置换τ的阶为n,取τ的轮换分解式τ=σ₁σ₂ · · · σₜ,其中各 σᵢ 为一长度小干等于n的轮换,所有轮换长度之和等于n,且各轮换两两不交,从而两两可交换,那么τᵏ=σᵏ₁σᵏ₂ · · · σᵏₜ,∀k ≥ 1,根据已进行过的讨论可得出 τ 的阶等于各 σᵢ 的阶的最大值,因为 τ 的阶为n,所以 t=1 ,且 τ=σ₁ 为一n轮换。

这样,Sₚ的每个西罗p-子群都由某个p轮换生成。如果 H₁,H₂ 为两个不同的西罗p-子群,容易证明H₁∩H₂=f{(1)},这是因为,若某个(1) ≠ α ∈ H₁ ∩ H₂,因为 H₁ 的阶为p为一素数,所以a生成H₁,从而H₁=〈α〉,但因为α ∈ H₂,很自然有

〈α〉⊂ H₂,也即H₁ ⊂ H₂,二者阶相等,从而 H₁=H₂,这与二者是不同的西罗

p-子群相矛盾。

若H₁,H₂,· · ·,Hₛ 是 Sₚ 的所有不同的西罗p-子群,那么每个Hᵢ=〈σᵢ〉,其中 σᵢ 为一p轮换。因为Hᵢ∩Hj={(1)},i ≠ j,可知Sₚ的所有阶为p的元素个数为 s · (p – 1)。因为阶为p的元素必定是某个p轮换,这就要求我们来求 Sₚ 的所有不同的p轮换。

因为形如 (α₁,α₂,· · ·,αₚ) 的排列一共有p!个,对于每个特定的排列(α₁,α₂ · · · αₚ),当我们将它看成是p轮换σ=(α₁α₂ · · · αₚ) 时,它将有且只有p种相等的形式,即:

σ=(α₁α₂ · · · αₚ)=(α₂α₃ · · · αₚα₁)=· · ·= (αₚα₁α₂ · · · αₚ₋₁),从而所有不同的p轮换只可能有

p!/p=(p – 1)!个。

结合上面的讨论,我们已经可以得出等式s · (p – 1)=(p – 1)!即s=(p – 2)!。也就是说 Sₚ的所有不同的西罗p-子群的个数为

(p – 2)!个。但是根据西罗第三定理,我们知道s≡1 (mod p),从而(p – 2)

!≡1 (mod p),两边同时乘以

P-1(因为显然的p – 1 ≡ p – 1(mod p)),得到

(p – 1)!≡ p – 1 ≡ –1(mod p),这就是Wilson定理了。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

魔神对决 连载中
魔神对决
191***612
为了战胜邪恶势力,叶寻与千颜克服重重困难去寻找上古神兽,只为最终一战,给世界一个和平。
10.3万字8个月前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字8个月前
白梓萱与王静 连载中
白梓萱与王静
白梓萱54341348
“东关小学就像那五只小羊一样,快乐,幸福,美丽”“只有露西,并不像只小羊”“东关小学又是一个美丽团结的羊村”“善良团结”“有时候村里也可能混......
0.2万字8个月前
本文番外 连载中
本文番外
月醉星河
作品为原创.禁止抄袭.不喜勿喷.作者:幻薇梦;幻洢梦;月醉星河;幻瑰梦;幻蝶梦;幻玫梦;洢佳;喜欢蓝天白云的L;柳柳薇;蔷薇的温柔以上都是作......
110.2万字6个月前
奇思妙想,小说合集 连载中
奇思妙想,小说合集
king2003
此文不只有一个故事,很多故事,每一个故事都是短篇小说。第一篇:花心痞帅硬汉;季北辰VS独立理智坚韧冷艳美女;莫希。(现代言情,花心浪子遇真爱......
6.1万字4个月前
星空下的守望者 连载中
星空下的守望者
橙子树_75469
科技的发展使人类成功走向宇宙,星际时代就此拉开帷幕。当人类的星际移民进行的如火如荼时,来自宇宙深处的神秘敌人却悄然降临……一个从边缘星球走出......
8.6万字3个月前