数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

昼夜交替永不更迭 连载中
昼夜交替永不更迭
我爱五星红旗
玛琳·布莱克(阿尔法德·布莱克和某个不知名的美国麻瓜的女儿)平凡但并非没有波澜的一生。她是伊法摩尼的优秀学子,也是令联合国最头疼的员工,更是......
4.3万字8个月前
我在无序副本里弑神 连载中
我在无序副本里弑神
秋南栀
「出逃者」浅羽x「神牌」林沨林沨在求死时意外进入副本系统,为了与系统达成交易,获得【起死回生】复活妹妹,林沨选择留在系统成为玩家在过副本途中......
6.5万字5个月前
花痴女配就不能是万人迷了吗 连载中
花痴女配就不能是万人迷了吗
巫筱
【渣女+雄竟修罗场+舔狗文学+多男主买股文】温晴绑定了一个名为舔狗系统的不明生物体。在系统的解释下才明白自己生活在一本名为《师尊别走》的话本......
2.9万字4个月前
女主她妖又邪你惹她干嘛 连载中
女主她妖又邪你惹她干嘛
陌殇花
『喜欢的话可以动动小指头点个收藏♡』说我是妖女?不好意思你错了!池卿卿笑了,笑的邪魅又肆意…魔本无心,因为遇见你,长出了血肉,生出了情…
7.5万字3个月前
原来我就是你 连载中
原来我就是你
鱼仔璃
讲述的是这是一个鬼怪横行的世界女主是玄青山玄清观的关门弟子玄清观的继承人下一任观主,因为贪玩跑到人间去但因为使用法术害死不少人女主的师傅很生......
0.3万字2个月前
烈焰蝶影——虚妄的八芒星 连载中
烈焰蝶影——虚妄的八芒星
玖星尘
二人重新回到了那个噩梦世界,不知为何无法脱困,一个关键人物归还她们的自由,让这三个伤痕累累的心治愈,仿佛那个人物就是这个噩梦世界的……创作者......
2.0万字1个月前