数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

兰式玉 连载中
兰式玉
匕首_27562892568598715
苏章是个杀手在执行任务时意外身亡,在睁眼就到了个陌生的地方,还绑定了万圣2.0系统,在个个小世界演绎角色。
1.6万字4个月前
不是向阳花 连载中
不是向阳花
听音不见仙
女主:薛茗
0.7万字4个月前
作者的发疯或随笔 连载中
作者的发疯或随笔
季亭.
作者的发疯随笔小日常而已啦,可能存在多元素,毕竟我有的时候可能就灵感爆发,嗯,想写一些如咒回文野的同人短文我可能就会写在这里,当然更多时候是......
0.5万字3个月前
转生到异世界当恶役 连载中
转生到异世界当恶役
副本开始
主角(伊莉亚)在某深夜咖啡馆喝咖啡,却意外穿进了
2.8万字3个月前
星光秘事 连载中
星光秘事
青念苒
第一季[未完待续]为什么会有这么多遗憾呢,一场残忍的大赛,亲人不爱,被抛弃,兄弟反目成仇——暮雪只是为一件事。要欺骗这么多人吗?总之这一切我......
1.3万字3个月前
以是思尽莫招桃 连载中
以是思尽莫招桃
茶少馆
殷義·君泽哈尔的身世迷离,在这身世的背后又隐藏了何等残酷的真相呢?此本小说主要是以殷義·君泽哈尔的角度来写,所以一些伏笔会在后面,所以各位小......
0.3万字2个月前