数学联邦政治世界观
超小超大

关于体的华罗庚恒等式

设K为一体,α,b∈K且α,b不等于0,且αb≠1,证明华罗庚恒等式:

α –(α⁻¹ +(b⁻¹ – α)⁻¹)⁻¹=αbα 。

体和域的构造类似,不同的是体的乘法没有交换性,四元数集合

{α+bi+cj+dk丨α,b,c,d∈ℝ} 就是一个体,其中

ij= –ji=k,jk= –kj=i,ki= –ik=j

,是不满足交换律的。

我们先来证明,对于任何x≠0,1,恒有

(x⁻¹ –1)⁻¹=(1 – x)⁻¹ –1 。

因为x ≠ 0,1,所以x,(1-x)可逆,且

x⁻¹ ≠ 1,故x⁻¹ –1也可逆。从而:

x⁻¹ –1)x=x⁻¹x – x=1 – x,两边同时右乘x⁻¹,有:

x⁻¹ –1=(1 – x)x⁻¹。于是:

(x⁻¹ –1)⁻¹=((1 – x)x⁻¹)⁻¹=x(1 – x)⁻¹

=(1 – x)⁻¹ – (1 – x)(1 – x)⁻¹

=(1 – x)⁻¹ – 1.

这样就得到了这个结论。

接下来,对于原式:

α – (α⁻¹+(b⁻¹ – α )⁻¹)⁻¹

=α – [α⁻¹(1+α(b⁻¹ – α)⁻¹)]⁻¹

=α – [1+((b⁻¹ – α)α⁻¹)⁻¹]⁻¹α

=α – [1+(b⁻¹ α⁻¹ – 1)⁻¹]⁻¹α

因为a,b不为0,且αb≠1,所以

(αb)⁻¹=b⁻¹α⁻¹≠1,于是可利用刚刚证明的结论:

(b⁻¹α⁻¹ – 1)⁻¹=(1 – αb)⁻¹ – 1 。带入到上面的推导中:

α – (α⁻¹+(b⁻¹ – α)⁻¹)⁻¹

=α – [1+(b⁻¹α⁻¹ – 1)⁻¹]⁻¹α

=α – [(1 – αb)⁻¹]⁻¹α

=α – (1 – αb)α

=αbα.

从而体中的华罗庚恒等式得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

云与夜 连载中
云与夜
琪琪拉
哎嘿!甜甜甜!轻微ABO
2.3万字1年前
旁观者有罪 连载中
旁观者有罪
悲楚南落笔兰
往往查的越多…死的就越快,警告的终端便是死亡,查不到的往往是最危险的,科学的终端是玄学…而玄学的终端则是无尽的幻想……
0.6万字12个月前
快穿:大佬宿主又在搞事情 连载中
快穿:大佬宿主又在搞事情
纳兰陌白
「原创系统文勿抄袭转载不喜勿扰」钟离九,因为一次意外而陷入沉睡,过了一世纪又一世纪,钟离九一醒就看了那人。  由于要恢复自己的创世神位,需要......
23.9万字7个月前
(重生)美人面 连载中
(重生)美人面
蠚里
原创双男主炮灰美人重生文甜宠主角绝美非快穿每个世界都是不一样的人各种类型供君挑选~
13.5万字7个月前
天定世间生机 连载中
天定世间生机
八面玲珑的冷漠美人
利益。自保。残忍。劫富济贫。要利益,要自保,要大义,要善心。王者般的存在,是没落还是向心所至。已签约/连载中/原创禁止转载❗❗❗
3.6万字6个月前
果宝特攻(山海传) 连载中
果宝特攻(山海传)
归零之重启
“不管刀山火海,不畏风雨阻挡,不服天地命运,只愿跨山海,灭世间。”——菠萝吹雪“人生自古都无虞。只怕,跪下屈服。”——橙留香“我的钱不是我的......
0.8万字4个月前