数学联邦政治世界观
超小超大

CAT空间

给定,以 κ ∈ ℝ,以 Mⁿκ 表示如下度量空间:(1)若κ=0,则 Mⁿ₀ 是欧氏空间 𝔼ⁿ;

(2)若κ>0,则 Mⁿκ 是由球面 𝕊ⁿ 上以度量

1

乘常数 ── 所得;

√κ

(3)若κ<0,则 Mⁿκ 是由双曲空间 ℍⁿ 上以

1

度量乘常数 ── 所得.

√–κ

度量空间X 中的测地三角形 Δ 由三个顶点 p,q,r∈X 和三条连接它们的测地线即边 [p,q],[q,r],[r,p] 构成,记作 Δ(p,q,r). 在 M²κ 中,如果

d(ˉp,ˉq)=d(p,q) d(ˉq,ˉr)=d(q,r) d(ˉr,ˉp)=d(r,p),

则称ˉΔ=Δ(ˉp,ˉq,ˉr) 为 Δ=Δ(p,q,r) 的相较三角形 (comparison triangle). 当 Δ 的周长 d(p,q)+d(q,r)+d(r,p) 小于 2 倍 M²κ 的直径 Dκ,则上述三角形 ˉΔ ⊂ M²κ 一定存在,且在等距同构意义下惟一[1]. 对于 x ∈ [p, r],若 d(q,x)=d(ˉq,ˉx) 则称点 ˉx ∈ [ˉq,ˉr] 为 x 的相较点 (comparison point). 若 p ≠ q 且 p ≠ r,则 Δ 在点 p 的角是测地线 [p,q] 和 [p,r] 之间在点 p 的 Alexandrov 角.

定义 1. 令 X 为度量空间,给定 κ ∈ ℝ. 令 Δ 为 X 上周长小于 2Dκ 的测地三角形,ˉΔ ∈ M²κ 为其相较三角形. 若对任意 x,y ∈ Δ 和任意相较点 ˉx,ˉy ∈ ˉΔ 有 d(x,y) ≤ d(ˉx,ˉy),则称 Δ 满足 CAT(κ) 不等式. 以下两种情况称 X 是 CAT(κ) 空间,或简称 X 是 CAT(κ).

(1)当 κ ≤ 0 时,测地空间 X 中所有测地三角形满足 CTA(κ) 不等式;

(2)当κ>0 时,X 是 Dκ-测地空间[2],且其中周长小于 2Dκ 的测地三角形满足 CAT(κ) 不等式.

q ˉq

↙ ↘ ↙ ↘

x ↙ r ˉx ˉr

↙ ↖ ↙ ↖ ↙

p ←y ˉp ← ˉy

定义 2. 对于一个度量空间 X,若它为局部 CAT(κ) 空间,即对于任意 x ∈ X,存在 rₓ>0 使得球 B(x,rₓ) 及其所诱导的度量是 CAT(κ) 空间,则称 X 的曲率 ≤ κ. 当 X 的曲率 ≤ 0 时,则称其为非正弯曲的 (non-positively curved).

命题 3. 令 X 为 CTA(κ) 空间.

(1)对于任意一对点x,y ∈ X 的测地线(若 κ>0 要求 d(x,y)<Dκ),存在惟一连接它们的测地线,且该测地线随其端点连续变化.

(2)在X 中任一长度至多为 Dκ 的局部测地线是测地线.

(3)在X 中半径小于 ── 的球是凸的

2

,即球中任意两点可由惟一包含于该球的测地线连接.

(4)在X 中半径小于 Dκ 的球是可缩的.

(5)对于任意λ<Dκ 和 ε>0,存在 δ=δ(κ,λ,ε) 使得若 m 是满足 d(x,y) ≤ λ 的测地线 [x,y] ⊂ X的中点,且

max{d(x,m'),d(y,m')}

1

≤ ─ d(x,y)+δ.

2

则d(m,m')<ε.

推论 4. 对于 κ ≤ 0,任意 CAT(κ) 空间是可缩的. 特别地,它是单连通的且其高阶同伦群都是平凡的.

参考

1. 参见 Metric Spaces of Non-positive Curvature, Ⅰ.2.13, Bridson 和 Haefliger 著

2. 即任意距离小于 D_κ 的两点可由测地线相连

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

血之海 连载中
血之海
笔墨sty
台风之爱恨,两界之种种事--水与火,可以相容
3.5万字2周前
十二星座之星空璀璨 连载中
十二星座之星空璀璨
陌cc
当你仰望天空,星空璀璨,繁星闪耀,如此美丽的背后究竟是怎样的凶险和困境,才有如此漂亮的星空呢?星空之下隐藏的秘密又是什么呢?|星空如此璀璨,......
6.3万字1周前
垃圾断文章合集 连载中
垃圾断文章合集
一一默rycidxy
所有内容都为言情。这一本是黑历史。我自己写的一些篇章和和别人一起写的一些篇章,会汇集到这本书里。类型多样,风格多样。
1.8万字2天前
归魂渊 连载中
归魂渊
冰霜之间
有花无叶,有叶无花,永生永世,无法相见,生生不息,轮回不止,悲剧之爱,曼珠沙华。
3.8万字2天前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字2天前
蚊子 连载中
蚊子
巟无
oc一号世界观而已
0.5万字昨天