数学联邦政治世界观
超小超大

Learning theory by Zhangtong

3.1 PAC learning

• 只针对concept class:布尔值函数

• 针对concept class里面的任意函数和任意数据集,可以在多项式复杂度下把它学出来。

3.2 Analysis of PAC

• Generalization error:此时还是在distribution期望下的sign function。它可以被所有函数empirical mean 和true mean的最大值给bound住。

• Union bound:函数数量有限时,可以一起bound:

CHAPTER 3.UNIFOR CONVERGENCE 32

Proposition 3.5(Union Bound).Consider m eυents E₁,. . .Eₘ.The fοllοωing probαbility inequαlity holds:

Pr(E₁∪· · ·∪ Eₘ) ≤ ∑Pr(Eⱼ).

ⱼ₌₁

• 对每个函数empirical mean error和true mean error 之间的差,用第二章的chernoff bound就可以了。

• 最后,如果还是想知道true mean error,只要保证empirical mean error足够下就行。

Theorem 3.6. Consider α concept clαss C ωith N elements. With probαbility αt leαst 1 – δ,the ERM PAC leαrner (3.1) ωith

2 ln(N/δ)

ϵ'=γ² ─────

n

2

for some γ>0 sαtisfies

2 ln(N/δ)

err ᴅ(f) ≤ (1+γ)² ─────

n

Realizable PAC,finite case

3.3 Empirical Process

三大问题:

1. general non-binary-valued function classes which may contain an infinite number of functions。

2. non-realizable case wheref∗(x) /∈ C

3.the observation Y contains noise

• 首先就是扩展不再是binary-valued。引入loss-function:ф(ω,z) .ERM methods 能保证的是

ф(ω,Sₙ) ≤ inf ф(ω,Sₙ)+ϵ'.

ω∈Ω

Training error

下面这个引理保证generalization error:

Lemma 3.11. Assume thαt for αny δ ∈ (0,1), the fοllοωing nifοrm conυergence result holds ωith some α>0 (ωe αllοw α to depend on Sₙ). With prοbαbility αt leαst 1 – δ₁,

∀ω ∈ Ω:αф(ω,D) ≤ ф(ω,Sₙ)+ϵₙ(δ₁,ω).

Mοreουer,∀ω ∈ Ω the fοllοωing inequαlity holds ωith some α'>0(ωe αllοω α' to depend on Sₙ). With prοbαbility αt leαst 1 – δ₂,

ф(ω,Sₙ)<α'ф(ω,D)+ϵ'ₙ(δ₂,ω).

Then the fοllοωing stαtement hοlds. With prοbαbility αt leαst 1 – δ₁ – δ₂,the αpproximαte ERM method (3.7) sαtisfies the orαcle inequαlity:

αф(ω,D) ≤ inf [α'ф(ω,D)+ϵ'ₙ(δ₂,ω)]+ϵ'+ϵₙ(δ₁,ω). ω∈Ω

可以证明PAC learning所给出的(ω,x) 能满足引理3.11的条件,即便最优解不再concept class中。

注意这里第一条是uniform convergence,而第二条是individual的,不需要乘以函数个数。

以上解决了non-binary-valued function 和∗(x) /∈ C的问题。

3.4 Covering number

提出了Lower bracket cover来解决有无穷多个函数的问题。

Corollary 3.15. Assume thαt ф(ω,z) [0,1] for αll ω ∈ Ω αnd z ∈ Z. Let g=Let ↅ={ф(ω,z):ω ∈ Ω). With probαbility αt leαst 1 – δ,the αpprοximαte ERM methοd(3.7) sαtisfies the (αdditiυe) οrαcle inequαlity: ф(ω,D) ≤ inf ф(ω,D)

√2ln(2Nʟʙ(ϵ,ↅ,L₁(D))/δ)

+ϵ' +inf [ϵ+─────────

ϵ>0 n

Mοreουer,ωith prοbαbility αt leαst 1 – δ,ωe hαυe the fοllοωing (multiplicαtiυe)

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

想要竹马甜甜的~ 连载中
想要竹马甜甜的~
九-儿
明明人家的时而霸道,时而温顺,可盐可甜,为什么我的竹马不一样?!在线等!急啊!!!
1.7万字3周前
黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.2万字2周前
梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字1周前
相遇和你 连载中
相遇和你
樱三
李云天为天玄宗立下了汗马功劳,原本是天玄宗宗主继承人,却没想到被宗门弟子嫉妒惨遭暗算,迫不得已打开了异世界的通道,将自己元神分离进入了这个异......
4.2万字3天前
元良续章 连载中
元良续章
南缘十四
一次意外,让两个世界相撞,我们成了彼此不可或缺的拼图。我们的相遇,点亮了彼此的夜空。
2.1万字3天前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字2天前