Jacobson猜想原表述:对于一个左诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。
但1965年该表述被证伪,目前仍然open的是以下表述:
“对于一个双边诺特的幺环R,其Jacobson根J的所有幂之交J^ω=0。”
我对该猜想比较感兴趣。
刚翻到一篇有意思的文献,声称,如果幺环R满足如下条件之一,那么J^ω=0:
1、R是左主理想区且有一个左Motria对偶;
2、R是双边诺特环,且它作为自己的左模在离散拓扑下线性紧致。
参考文献:Claudia Menini,Jacobson’s Conjecture, Morita Duality
and Related Questions,Journal of Algebra 103, 638-655 (1986)
抽象代数:环论:
For a ring Rwith Jacobson radical J,the nonnegative powers Jⁿ are defined by using the product of ideals.
Jacobson's conjecture:lnaright-and-left Noetherian ring,∩Jⁿ={0}.
n∈ℕ
3. Sᴏᴍᴇ Fᴜʀᴛʜᴇʀ Rᴇsᴜʟᴛs
In this section we will get some more results about Jacobson's conjecture and we will show that, in some particular cases,it holds.
3.1. LEMMA. Let R be α ring,J=J(R),Jω=Jω(R). Suppose thαt ʀR is
I.c.d.αnd ʀJ is finitely generαted. Then
Jω=JωJ.
Proof.Let J=Rα₁+· · ·+ Rαₙ. For every left R-module M. let M⁽ⁿ⁾ denote the direct sum of n-copies of M. Define
f: ʀR⁽ⁿ⁾ → ʀR
by setting
(r₁,...,rₙ)f=r₁α₁+· · ·+rₙαₙ, r₁,...,rₙ∈R.
Then f is a morphism of left R-modules and
(∩(JᵏR⁽ⁿ⁾)f=((Jω)⁽ⁿ⁾)f=JωJ.
ₖ
As ʀR is l.c.d.,by Satz 1 of [L] it is:
(∩(JᵏR⁽ⁿ⁾)f=∩((JᵏR⁽ⁿ⁾)f=Jω.
ₖ ₖ
3.2. Cᴏʀᴏʟʟᴀʀʏ. Let R be α ring,J=J(R), Jω=Jω(R).Assume thαt ʀR is I.c.d. αnd thαt both ʀJ αnd Jωʀ αre finitely generαted. Then Jω=0.
Proof. By Lemma 3.1 Jω=JωJ.Apply now Nakayama’s Lemma.
Recall that a ring R is said to have a left Moritα duαlity if both ʀR and the minimal cogenerator ʀK of R-Mod are l.c.d.
3.3. Remαrk. Corollary 3.2 holds in particular when R is a noetherian ring (on both sides) having a left Morita duality. This result has been already proved, in another way,in [J4].
3.4.Pʀᴏᴘᴏsɪᴏɴ. Let R be α ring J=J(R),Jω=Jω(R). Suppose thαt R is α locαl (i.e.,R/J is α diυision ring),J=Rz,ʀJω is finitely generαted αnd R hαs α left Moritα duαlity. Then there exists αn n∈ℕ such thαt JⁿJω=0.
Proof. Let ʀK be the minimal cogenerator of R-Mod and suppose that for every n∈ℕ,there exists
eₙ∈Ann ᴋ(JⁿJω)\Ann ᴋ(Jⁿ⁻¹Jω).
For every n∈ℕ let ēₙ=eₙ+Ann ᴋ(Jω)∈ K/Ann ᴋ(Jω).Then the elements ēₙ yield α bαsis for α free left R/Jω module. In fact note that JωJωeₙ=0 and assume that
ₜ
∑ rₙēₙ=0 with rₙ∈R,rₜ ∉ Jω.
ₙ₌₁
Then rₜ eₜ ∈ Ann ᴋ(Jᵗ⁻¹Jω) and hence Jᵗ⁻¹ Jωrₜ eₜ =0.
Since rₜ ∉ Jω and R is local,there exist an l∈ℕ and an invertible element ε of R such that
rₜ=εzˡ.
Then Jωrₜ=Jωεzˡ=Jωzˡ and, by Proposition 3.1,Jωrₜ=Jω.Thus Jᵗ⁻¹Jωeₜ=0. Contradiction.
Since K/Ann ᴋ(Jω) is an l.c.d. left R-module this cannot happen. Hence there exists an n such that
Ann ᴋ(JⁿJω)=Ann ᴋ(Jⁿ⁺¹Jω).
652 ᴄʟᴀᴜᴅɪᴀ ᴍᴇɴɪɴɪ
Thus,as ʀK is a cogenerator of R-Mod,we get
JⁿJω=Jⁿ⁺¹Jω.
Nakayama’s Lemma implies that JⁿJω=0.
3.5. Cᴏʀᴏʟʟᴀʀʏ. Let R be α left principαl ideαl domαin with α left Moritα duαlity. Then Jω(R)=0.
Proof.As ʀR is l.c.d.,idempotents modulo the Jacobson radical lift. Thus,since R is a domain,R must be local.Apply now Proposition 3.4.
3.6. Remαrk. The ring R in 2.10 is a left principal ring.Thus 2.11 shows that the hypothesis “domain” in Corollary 3.5 cannot be omitied.
数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。