数学联邦政治世界观
超小超大

Mycielski定理

定理(Mycielski):设Ⅹ 为一波兰空间, R ⊆ Ⅹ × X 是其上的一个meager的等价关系,则存在一个闭的perfect子集 C ⊆ X ,使得 C 中元素两两 R-不等价。

Proof:假设Dₙ ⊆ Ⅹ × X 为一列稠密开集,使得 R∩∩Dₙ=∅ 。

下面我们构造一个从 2ω 到非空开集的映射 σ ↦ Vσ 使得:

───

1. 对每个 σ ∈ α<ω,Vσ⁀i ⊆ Vσ,其中 i ∈ {0,1} 。

2. 对每个 σ ∈ 2<ω , diam(Vσ) ≤ 2⁻|σ|。

3. 对每个 n ,以及 σ,τ ∈ 2ⁿ⁺¹ ,如果 σ ≠ τ ,则 Vσ × Vτ ⊆ ∩ Dₙ 。

m≤n

令V〈·〉=X 。现在假设对每个 σ ∈ 2ⁿ ,Vσ 都已经定义好了,现在取 V' ⊂ Vσ 使得

────

V' ⊆ Vσ ,且 diam(V') ≤ 2⁻ⁿ⁻¹ ,考察 V' × V' ∩∩ Dₙ

m≤n

,这是一个非空开集,取 Vσ⁀0,Vσ⁀1 使得 ∅ ≠ Vσ⁀0 × Vσ⁀1 ⊆ V' × V' ∩ ∩ Dₙ 。

m≤n

如果 σ,τ ∈ 2ⁿ 不相容,我们再对 Vσ⁀i,Vτ⁀i 做类似的操作,保证 Vσ⁀i × Vτ⁀i ⊆ Dₙ ,其中 i ∈ {0,1} 。

现在定义映射f:2ω → X 使得

x↦∩Vₓ⨡ₙ

n∈ω 则这个映射定义良好,因为 ∩ₙ Vₓ⨡ₙ

───

=∩ₙ Vₓ⨡ₙ 为单点集。而且这个映射是单射,因为如果 x ≠ y ∈ 2ω ,则对所有 n , (x,y) ∉ ∪ₙ ,从而 (x,y) ∉ R ,所以 x ≠ y 。 f 显然是连续的,因为 f⁻¹[Nₛ]={x ∈ 2ω:∃n Vₓ⨡ₙ ⊆ Nₛ} 从而像集 f[2ω] ⊆ X 就是一个perfect的闭集。闭性因为 2ω 的紧致性,无孤立点因为单射。其元素两两 R-不等价刚刚已经证明过了。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

斗破神域(复新版) 连载中
斗破神域(复新版)
韵笑笑
本故事就纯属虚构,请勿模仿。本故事讲述了由作者心中的角色幻想出来的各种奇思妙想的故事,可能会有不便之处,请多理解!
5.3万字10个月前
777号玻璃树:属于我们的世界幻想 连载中
777号玻璃树:属于我们的世界幻想
*夜半太阳*
有关于维持世界时空的失落之石遭到破坏爆炸导致世界重组后,发生在一个先进的信息文明,以玻璃树作为主角视角的探索故事
0.5万字9个月前
他呀!万人迷而不自知 连载中
他呀!万人迷而不自知
小鹿叮咚
(原创该书已签约)快穿局萌新言之害怕极了,为什么每个世界的主角都不按套路出牌啊!呜呜呜...
1.3万字9个月前
斗破神域第二部星潮织梦录 连载中
斗破神域第二部星潮织梦录
韵笑笑
本作品纯属虚构,与上部剧情不完全链接,请勿转发
3.1万字7个月前
我的短篇小文……合集 连载中
我的短篇小文……合集
京剧猫伊安逸
短篇小文,主要人物炽风、影时等自创人物,自创小说,希望你们喜欢不喜欢也没关系,我很喜欢(虐文)
1.2万字4个月前
失业后我靠评价网文暴富了 连载中
失业后我靠评价网文暴富了
白飞升
16.4万字4个月前