数学联邦政治世界观
超小超大

范畴论基础(Grothendieck宇宙)

定义 集合 ∪ 称为宇宙,如果满足以下性质

1.u∈∪⇒u⊂∪,即:∪是传递集;

2.u,υ∈∪⇒{u,υ}∈∪

3.u∈∪⇒P(u)∈∪

4.若 l ∈ ∪ , 一族集合 {uᵢ:i∈l}满足 ∀i,uᵢ ∈∪, 则 ∪uᵢ ∈ ∪

i∈l

5.ℤ≥₀∈∪.

对于集合Ⅹ,若 X∈∪ 则称为 ∪ -集;若 X 和一个 ∪ -集等势,则称为 ∪ -小集.

注 上述表述如果用更通俗的语言来表达, 可以理解为满足以下性质的集合 ∪ 称为宇宙:

1. ∪ 中的元素都是集合且是 ∪ 的子集

2. ∪ 中有限个元素构成的集合是 ∪ 的元素

3. ∪ 中元素的幂集是 ∪ 的元素

4. ∪ 中元素的任意并(指标需要也是 ∪ 中元素)都是 ∪ 的元素

5. ℤ≥₀ 是 ∪ 的元素

并且∪ 中元素可以简称为 ∪ -集.

假设 (A. Grothendieck) 对任何集合 X,存在宇宙 ∪ 使得 X∈∪ .

本着得过且过的原则, Grothendieck 宇宙就介绍到这里.

定义 一个范畴 C 称作是 ∪ -范畴,如果对任意对象 X,Y,从 X 到 Y 的态射 Homᴄ(X,Y) 都是 ∪ -小集. 如果态射集 Mor(C) 也是 ∪ -小集, 则称之为 ∪ -小范畴.

注 一个范畴 C 是不是 ∪ -范畴,主要看它的态射集 Mor(C) .

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

玄界:往事寻意 连载中
玄界:往事寻意
路过的魈厨
双男主安米瑞斯×宴江副cp枫喻川×周暮云克罗维亚斯×苏长青殷十九×穆灵
1.7万字6个月前
萌萌传 连载中
萌萌传
像老鹰一样123
《这样唱好美》中的女歌手,苏诗丁,唱得歌,比如《杀破狼》,唱得声音很玄空,清脆悦耳,小艳听了也说好听,撒撒听了说摇头,那我问他:“你喜欢什么......
61.9万字5个月前
嗜血暗夜 连载中
嗜血暗夜
亦依然
卡米拉一直认为自己是一个没有感情的怪物,可是最后他还是心软了,收养了个半人半吸血鬼的小可怜作为吸血鬼,卡米拉惊奇的发现自己新收养的小可怜竟然......
0.7万字5个月前
觉醒后我和女鬼杀疯了 连载中
觉醒后我和女鬼杀疯了
片儿鱼
言清欢and言宜愉『实力爆表大佬鬼and智勇双全大美人』双女主,文笔差————————言宜愉是个初中生她原以为三年就这么过去了直到…学校操场......
1.5万字4个月前
神陨之墟:光明颂 连载中
神陨之墟:光明颂
筱音韵
在神明隐退的破碎纪元,银发少女洛璃背负着连自己都遗忘的创世之秘。一次惨烈的守城战中,她被恶魔首领的毒箭贯穿心脏,从云端坠落——神力溃散、记忆......
0.5万字3个月前
末世躺平法则 连载中
末世躺平法则
余婞自僖
如果到了末世,你想干什么?是努力奋斗去维护世界和平,还是想救他人于水火?面对未知的一切,你想怎么办
1.1万字2个月前