数学联邦政治世界观
超小超大

拓扑数学(二)

我举个比较初等的例子:素数有无限个的拓扑证明。这个是由Furstenberg给出的,并因为刊登在《数学天书中的证明》一书中而被广为人知。

对于α,b ∈ ℤ,b>0 ,定义 Nα,b={α+nb|n ∈ ℤ} ,对于集合 O ⊆ ℤ ,称 O 为开集,当且仅当 O=∅ 或对任意 α ∈ O ,存在 b ∈ ℕ₊ ,使得 Nα,b ⊆ O 。不难验证所有的开集 O 构成了 ℤ 上的一个拓扑,并且:

• 非空开集必是无限集

• 形如 Nα,b 的集合既是开集又是闭集

由于任何一个n ∈ ℤ – {1,–1} 均至少有一个素因子 p ,故 n ∈ N₀,ₚ ,因此 ℤ – {1,–1}=∪N₀,ₚ 。

p prime

如果只有有限个素数,则右边是闭集的有限并,因此为闭集,从而 {1,–1} 为开集,这与非空开集是无限集矛盾。所以素数有无限个。

这个证明最令我觉得惊艳的一点是,它利用整数环 ℤ 的代数结构构造出了一个拓扑结构,并以之证明素数的无限性。

事实上,Nα,b 就是形如 α+ℑ 的集合,其中 α ∈ ℤ 而 ℑ=(b) 是 ℤ 的一个非零理想。这意味着对于一般的非零环 R ,如果它的任意两个非零理想的交不是零理想,我们可以照猫画虎定义其上的一个拓扑 τ :它的一个基 B 是形如 r+ℑ ( r ∈ R , ℑ 是 R 的一个非零理想)的集合的搜集。这个 B 是一个拓扑基,是因为:

• 显然 R ∈ B ,所以对任意 r ∈ R ,存在 B ∈ B ,使得 r ∈ B

• 对任意 r ∈ (r₁+ℑ₁)∩(r₂+ℑ₂) ,有 r₁+ℑ₁=r+ℑ₁ 且 r₂+ℑ₂=r+ℑ₂ ,因此 r ∈ r+ℑ₁∩ℑ₂=(r+ℑ₁)∩(r+ℑ₂)=(r₁+ℑ₁)∩(r₂+ℑ₂) ,前面的条件保证了 ℑ₁∩ℑ₂ ≠ 0 ,因此 r+ℑ₁∩ℑ₂ ∈ B 。

至于这个拓扑有什么用处,似乎除了上面的证明素数无限性,用处并不大,甚至R 带上这个拓扑能否构成拓扑环似乎都是不一定的,这意味着它的性质实际上很差。

当然代数结构诱导拓扑结构的例子其实不在少数,例如交换环的谱的Zariski拓扑、完备化模或环的Krull拓扑等等。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

来自遥远云境国度的星月神话 连载中
来自遥远云境国度的星月神话
糖裕
遵守世界法的萝甜甜掌管星星法则,一直爱护着可爱的子民。从西界到东海的旅途由此展开。与一群可爱的同胞,拥有友谊,发现爱情,守护亲情。
0.5万字5个月前
抱歉,徒弟有点多 连载中
抱歉,徒弟有点多
浔眠Dorment
【修仙+大女主+狗血+打脸】江予瑾X玄苍五百年过去了,以为死对头终于死了打脸,江予瑾好不容易决定从山上下来逛逛,结果处处受阻……没关系,我有......
0.3万字3个月前
修罗女君,终入怀! 连载中
修罗女君,终入怀!
糖丝甜
千万幽怨,已难渡万般情。最后的最后,那血发女子也成了帝上,掌管天上人间,威仪八方。而那扯下别人发带的少年同是帝上,与女子同渡万年,也将女子爱......
25.1万字3个月前
师妹修仙:笑闹青云间 连载中
师妹修仙:笑闹青云间
南山竹海^
本以为修仙之路严肃艰辛,可谁能想到竟有这么一位沙雕师妹,将整个修仙界搅得欢笑不断!看她如何在青云间摸爬滚打,凭借自己的无厘头和独特魅力,闯出......
2.2万字3个月前
星际玫瑰:雄性们纷纷拜倒 连载中
星际玫瑰:雄性们纷纷拜倒
苝辞
身处雌性稀少的星际兽人世界,卢悦表面上人畜无害,实则阴险算计。她扮猪吃老虎,利用自己海马一族能让雄性生育的能力,周旋于多位男主之间,在星际爆......
27.8万字2个月前
似梦(原:无限流之惊悚梦境世界) 连载中
似梦(原:无限流之惊悚梦境世界)
夭四水
在某一天,尹澜莫名穿到了一个被说成是无限流的地方,里面的经历很真实,他认识了很多过命朋友,他们在这个地方一起度过了很多时光,后面那个自称是系......
1.6万字1周前