数学联邦政治世界观
超小超大

Hartogs number的一个引理

定义集合X 的Hartogs number ℵ(X) 为 min {α ∈ Ord:α ≰ X} 。可以在ZF下证明每个集合都有Hartogs number(hint:否则就会导致Burali-Forti's paradox)

Lemma:对于任意无穷集合X,Y , ℵ(XY)=ℵ(X) × ℵ(Y)

Proof:由于ℵ(X) × ℵ(Y) ≤ max{ℵ(X),ℵ(Y)} ≤ ℵ(XY),因此只用证明 ℵ(XY) ≤ ℵ(X) × ℵ(Y)。

任选 κ<ℵ(XY) 且 κ 是基数,则存在 A ⊂ X × Y 和双射 f:κ → A 。令 A₀=projₓ(A) ∧ A₁=projʏ(A),现在证明 A₀,A₁ 都可以良序化:定义 ψ:A₀ → A 使得 ψ(x)=min Aₓ<ᴀ ,其中 <ᴀ 是 A 上的良序且 Aₓ={(x,y)} ∈ X × Y:(x,y) ∈ A},不难证明 ψ 是单射,因此 A₀ 可被良序化,同理 A₁ 可被良序化。用 ψ,<ᴀ 诱导出的 A₀,A₁ 上的良序的基数 ≤ κ ,且必然在 A₀,A₁ 有一个的基数 ≥ κ ,不妨设 A₀ 的基数 ≥ κ ,则 ℵ(X)>κ ,因此 ℵ(XY) ≤ ℵ(X) × ℵ(Y) ,lemma成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

血之海 连载中
血之海
笔墨sty
台风之爱恨,两界之种种事--水与火,可以相容
3.5万字5个月前
梦:我的一百零一个梦 连载中
梦:我的一百零一个梦
聪明的呆子
他们说,梦里梦到的人,现实就见不到了如果我说我不信呢,我一定会见到你的
0.6万字4个月前
龙卷风之后 连载中
龙卷风之后
飞向天宏
南海的某夏天,一场突如其来的龙卷风,这是五千罕见的超强风,它所之处,一片狼藉……
12.1万字3个月前
落魄小宗竟全是大佬 连载中
落魄小宗竟全是大佬
栖休安
白漠渴望得道长生于是她来到来了一个小宗门(排雷:女主傻白甜,文中有多对楠楠副cp,全员be)
7.9万字2个月前
幸运心月 连载中
幸运心月
回礼信
裴胥熙,俢真界的一股清流,年纪轻轻便已成高就
1.0万字2个月前
Selita国度的英雄们 连载中
Selita国度的英雄们
死蟒食骸
【龙偶】【自设世界观】曾经,存在着一个神奇而古老的国度,名为Selita。在这个国度里,居住着各色各样的龙,它们是这片土地的真正主宰。其中,......
0.6万字1个月前