数学联邦政治世界观
超小超大

Hartogs number的一个引理

定义集合X 的Hartogs number ℵ(X) 为 min {α ∈ Ord:α ≰ X} 。可以在ZF下证明每个集合都有Hartogs number(hint:否则就会导致Burali-Forti's paradox)

Lemma:对于任意无穷集合X,Y , ℵ(XY)=ℵ(X) × ℵ(Y)

Proof:由于ℵ(X) × ℵ(Y) ≤ max{ℵ(X),ℵ(Y)} ≤ ℵ(XY),因此只用证明 ℵ(XY) ≤ ℵ(X) × ℵ(Y)。

任选 κ<ℵ(XY) 且 κ 是基数,则存在 A ⊂ X × Y 和双射 f:κ → A 。令 A₀=projₓ(A) ∧ A₁=projʏ(A),现在证明 A₀,A₁ 都可以良序化:定义 ψ:A₀ → A 使得 ψ(x)=min Aₓ<ᴀ ,其中 <ᴀ 是 A 上的良序且 Aₓ={(x,y)} ∈ X × Y:(x,y) ∈ A},不难证明 ψ 是单射,因此 A₀ 可被良序化,同理 A₁ 可被良序化。用 ψ,<ᴀ 诱导出的 A₀,A₁ 上的良序的基数 ≤ κ ,且必然在 A₀,A₁ 有一个的基数 ≥ κ ,不妨设 A₀ 的基数 ≥ κ ,则 ℵ(X)>κ ,因此 ℵ(XY) ≤ ℵ(X) × ℵ(Y) ,lemma成立。 ⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

清冷钓系美人每天都在修罗场 连载中
清冷钓系美人每天都在修罗场
栖行止
谢笺屿长发窄腰,拥有一双纯净澈透的冰蓝色凤眸,浑身散发的清冷圣洁气息,让他稳坐s市首校磬华大学高岭之花的宝座美人清净自持,端方矜贵,走到哪里......
110.6万字1年前
我在快穿世界里发疯(不是) 连载中
我在快穿世界里发疯(不是)
有价无市
女主蒋芸,因为一次意外,她来到了这个叫快穿的世界。并且结识了叫瑞瑞的系统。可是,她似乎失去了自己的记忆。于是她大手一摆,竟然来了,那就好好玩......
14.3万字12个月前
穿成电竞文里的菜鸡小炮灰 连载中
穿成电竞文里的菜鸡小炮灰
哒布吉呀
#年度MVP选手林宿雨穿书了#(双男主)(文中三观不代表作者三观,真的真的真的!)1林宿雨在带领自家俱乐部取得中国赛区的冠军,还没有享受冠军......
9.4万字12个月前
亓妄 连载中
亓妄
十云逝
亓妄说过,他只爱沈晚烟,他只信余倞和余焚。沈晚烟和他的母亲,是亓妄最后的防线;可在不久后,这最后的防线也断裂了。
1.3万字9个月前
重逢及相识 连载中
重逢及相识
Luan鸾梨
全都是作者幻想的,与实际不符,勿喷,作者新手小白,文笔不算多好既然我们别来无恙,那么就别过了吧下一次重逢即是相识--------------......
0.3万字9个月前
恋综:意外心动 连载中
恋综:意外心动
懒得去想la
第一次写小说,写的不好轻点骂,不喜欢左上角点点。参加恋爱综艺,顾清漓一眼沦陷在程梓穆的帅气与独特里,谁料他心有所属,顾清漓潇洒转身。入住豪华......
3.1万字7个月前