数学联邦政治世界观
超小超大

蕴含式的传递性

已知:A ⇒ B:=(¬A)∨B,求证命题P:(A ⇒ B∧B ⇒ C) ⇒ (A ⇒ C)恒为真。

证明:

P ⇔ [(– A∨B)∧(–B∨C) ⇒ (¬A∨C)] ⇔ ¬(¬A∨B)∧(–B∨C)]∨(¬A∨C) ⇔ (A∧¬B)∨(B∧¬C)∨–A∨C

现在讨论真值:

1. 显然A为假或C为真时,P为真。

2. 当A为真且C为假时,有:P=(A∧¬B)∨(B∧¬C) ⇔ (True ∧ ¬B )∨(True∧B) ⇔ ¬B ∖,由排中律,P为真。

蕴含式:A⇒ B

定义:A B:=( ¬ A) ∨ B

由定义可知——“A为真,则可知B为真”的等价表述是“ (¬ A) 为真,或B为真”。

拆解一下这个等价表述:

“(¬ A) 为真,或B为真” ⇒ 有以下两种情况:

(1)¬ A为假(A为真),且B为真;

(2)¬ A为真(A为假),B可以为真也可以为假。

这也等价表述了一种情况:若¬ A为假(A为真),则B不可能为假,也就是说 A 为真并不蕴含着B为假。

蕴含式的传递性:

(A⇒ C) ∧ (C ⇒ B) ⇒ (A ⇒ B)

传递性的等价表述:¬ ((A ⇒ C)∧(C ⇒ B))为真,或 A ⇒ B 为真。

蕴含式的传递性证明:

通过反证法,假设蕴含式的传递性不成立,即¬ ((A ⇒ C)∧(C ⇒ B))为假,且 A ⇒ B 为假,分别考证两个表达式:

1. ¬ ((A ⇒ C)∧(C ⇒ B))为假

可知(A⇒ C)∧(C ⇒ B)为真,则(A ⇒ C)为真 且(C ⇒ B)为真。

(1)(A⇒ C)为真

即:(¬ A) ∨ C 为真,已知 A 为真,则 C 为真。

(2)(C⇒ B)为真

即:(¬ C) ∨ B 为真,由(1)知 C 为真( ¬ C 为假),则 B 必为真。

2. A⇒ B 为假

即(¬ A) ∨ B 为假,已知 A 为真( ¬ A 为假),则 B 必为假。

上述 1 和 2 得出了两个关于 B 的矛盾结论,因此反证法假设不成立⇒ 蕴含式的传递性成立,得证。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.2万字5个月前
蚊子 连载中
蚊子
巟无
oc一号世界观而已
0.5万字5个月前
顾影自须怜 连载中
顾影自须怜
某懒
一白衣一青袍,两人相伴同行,云游四方,揭开世间百态,有喜,有悲,有离别,有相逢,同在一起便是最好…
4.1万字5个月前
这个自然之灵,自由之子有点腹黑啊 连载中
这个自然之灵,自由之子有点腹黑啊
Y159***65764
**自然之女,自由之灵**她出生于晨曦的温暖,伴着鸟鸣的乐章,她是自然之女,身披阳光的衣裳。她的笑声,是风的低语,她的眼神,是星辰的闪亮。她......
6.9万字3个月前
幻境大陆 连载中
幻境大陆
彩蝶灵舞
一本属于和魔法相似的魔法小说,一共有十位主角,五位男生,五位女生。不要把其他人当配角看,重复一遍“十位主角”。
3.2万字1个月前
似梦(原:无限流之惊悚梦境世界) 连载中
似梦(原:无限流之惊悚梦境世界)
夭四水
在某一天,尹澜莫名穿到了一个被说成是无限流的地方,里面的经历很真实,他认识了很多过命朋友,他们在这个地方一起度过了很多时光,后面那个自称是系......
1.6万字1周前