数学联邦政治世界观
超小超大

广义罗尔定理

数小成 数小成

微分中值定理-罗尔定理

罗尔定理定义:

1⁰ Rolle 定理 设f(x) 满足

(i) f(x) ∈ C[α,b];

(ii)f(x)在(α,b)内可导;

(ii) f(α)=f(b),

则至少存在 ξ ∈ (α,b)使得f'(ξ)=0.

注 (i)定理的条件只是充分条件.

(ii)定理的几何意义就是 (α,b)的某点存在水平的切线.

(iii) 此定理可以用 Fermat 定理证明,

(iv) 应用此定理判定方程的根 (连续函数的介值定理也常用来判定方程的根). 作为 Rolle定理的推广,有下面结果.

命题 设f(x)在(α,b)(有穷或无穷区间)中任意点有有限导数,且 lim f(x)=lim,f(x)

x→∞ x→∞

证明存在 ξ ∈ (α,b) 使得f'(ξ)=0.

罗尔定理的应用-函数零点问题

一般的函数的零点问题是指不需要求得原函数,在罗尔定理的应用中,通常指零点存在问题,该问题又可以细分为:函数的零点问题,函数的导函数零点问题(往往结合拉格朗日中值定理以及函数单调性)。函数的零点问题也是考研常见的问题。

2. 设f(x) 在 [α,b] 上连续,在 (α,b) 内可导,且f(α)<0,f(b)<0,又存在 c ∈ (α,b),f(c)>0.证明:存在 ξ ∈(α,b)使得f(ξ)+f'(ξ)=0.

证 令g(x)=f(z)eˣ,由条件

g(α)<0, g(c)>0, g(b)<0.

由零点存在定理知存在 x₁ ∈(α,c),x₂ ∈(c,b)使得

g(x₁)=g(x₂)=0,

由Rolle 定理知存在 ξ ∈ (x₁,x₂) ⊂ (α,b)使得

g'(ξ)=eξ[f(ξ)+f'(ξ)]=0,

所以f(ξ)+f'(ξ)=0. ◾

注 令g(x)=f(x)e⁻ˣ 可得到 f(ξ) – f'(ξ)=0.若令g(x)=eʰ⁽ˣ⁾f(x) 可得到更一般的结果.

3. 设f(x) 在 (α,b)(有穷或无穷区间) 中任意点有有限导数。且 lim f(x) = lim f(x).

x→α⁺ x→b⁻

证明:存在 ξ ∈ (α,b)使得f'(ξ)=0.

证 (1)当(α,b)为有限区间,设c=lim f(x)=lim f(x),令 x→α⁺

x→b⁻

f(x),x ∈ (α,b),

F(x) = {

c, x=α 或 x=b.

则F(x)在[α,b]内连续,且在(α,b)内可导,F(α)=F(b),由Rolle 定理知存在 ξ ∈(α,b) 使得F'(ξ)=f'(ξ)=0.

(2)若α=–∞,b=+∞,可设x=tan t,t ∈

π π

(– ─,─)

2 2

,令G(t)=f(tan t),

π π

t ∈(– ─,─)

2 2

π π

,由条件知存在to E(– ─,─)使得

2 2

G'(t₀)=f'(tan t₀) sec² t₀=0.

因为sec² t₀ ≠ 0,所以f'(tan t₀)=0,故取ξ=tan t₀ 即可.

(3)若α有限,b=+∞,令G(t)=f(tan t),t ∈

π

(arctan α,─)即可.

2

(4)若α=–∞,b有限,类似(3)的讨论,存在ξ ∈ (–∞,0) 使得 f'(ξ)=0. ◾

注 此结果可看成 Rolle 定理的推广.

特例(北京师范大学) 设 f(x) 在(0,+∞) 中任意点有有限导数,且

lim f(x)=lim f(x)=A.

x→∞⁺ x→+∞

证明:存在ξ ∈ (0,+∞)使得f'(ξ)=0.

以上的两个问题是常见的罗尔定理的证明题,其中第一个主要是构造函数,通常结合自然常数e的ax次方,进行乘除运算,以便导函数的结果可以靠近题目。第二题是罗尔定理的一种推广形式。考虑到函数极限,从而补充函数定义。

例1.设函数f(x)二阶可导,f(0)<0,f(1)=0,方程f(x)=0在(0,1)有实根x₀,当 x ∈ (x₀,l),有f''(x)>0,证明:存在 ξ ∈(0,1),使得f''(ξ)=0.

例 2.设函数f(x)在[0,+∞)连续,(0,+∞)可导,且f(0)=0,lim f(x)=0,

x→∞

证明:存在ξ ∈(0,+∞),使得f'(ξ)=0。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

昼夜交替永不更迭 连载中
昼夜交替永不更迭
我爱五星红旗
玛琳·布莱克(阿尔法德·布莱克和某个不知名的美国麻瓜的女儿)平凡但并非没有波澜的一生。她是伊法摩尼的优秀学子,也是令联合国最头疼的员工,更是......
4.3万字1周前
奇眠者 连载中
奇眠者
原野稳
写步临笺发现学校里的人一个一个的都失踪了,而他们的父母都没有他们的记忆,直到轮到自己也消失了,她发现自己被困在梦境里。无法走出来,有一天遇到......
1.3万字1周前
魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
1.6万字1周前
默祈 连载中
默祈
古灵精怪爱丽丝
父母被怪物害死的小默羽拼了命逃到教堂保住了性命,成为了看守神明法宝的一位小咯咯。但有一天,宝物意外失踪了,而所有的一切罪责和嫌疑都纷纷指向了......
1.0万字1周前
每个世界都在发生不同的事情 连载中
每个世界都在发生不同的事情
风中凌乱的
宝宝们,欢迎观看,希望宝子们喜欢,大家一起交流,可以告诉我,你想看的类型,我来写。
5.5万字3天前
愿祈世安 连载中
愿祈世安
糖糖就是俺
—“黑暗后的黎明名为希望.”—“是绝望亦或是希望?”......唯祈愿世安,奈何世不遂她所愿.
0.5万字3天前