数学联邦政治世界观
超小超大

布劳威尔不动点定理证明

本文证明Brauwer's Fixed point theorem,这是代数拓扑一个经典定理,由庞加莱最新证明,之后Hadamard,Brauwer相继给出证明,由于Brauwer的证明最modern,用了基本群的方法,所以流传下来就称之为布劳威尔不动点定理,它也是其他各种不动点定理的基础,同时和经济学的纳什均衡,以及游戏理论的几个定理有关。

本文证明参考于Hatcher. 当然本人没有看过,只是这个证明来自那本书。本文证明的是2维空间的特列。

首先定义:S¹:={(x,y)|x²+y²=1}

D²:={(x,y)|x²+y² ≤ 1}

布劳威尔不动点,是说任意连续函数f:D² → D²,存在一个不动点 x∈D²,使得 f(x)=x

基本群和同伦假设读者已经知道了,随便一本基础拓扑书都会介绍的。同伦就是函数A可以连续变形为函数B,就称之为A,B同伦。基本群需要固定拓扑空间中一个基点,然后起始点都在该点的路径的等价类构成的群。

证明思路是反证法, 先假设布劳威尔不动点不成立,也就是存在一个函数f:D² → D² 使得对任意 x∈D²,f(x) ≠ x

那么我们可以据此构造一个连续映射: r:D² → S¹,x ↦ r(x) 使得 r(x) 位于以 f(x) 为起点,过点 x 的射线上,几何上不难证明这样的 r(x) ∈ S¹ 是唯一的。

并且,显然有若x ∈ S¹,r(x)=x

现在我们取定S¹ 上的任意一个连续函数 f₀ 满足: f₀:[0,1] → S¹ 使得 f₀(0)=f₀(1)=x₀ ,这样的函数称为 S¹ 上的loop .

然后,根据D² 的性质,有:π₁(D²)={e} (也就是说 D² 上的基本群是平凡的) ,这意味着存在 D² 上同伦:

f₀ ~ x₀ (一个具体的例子是:fₜ(s)=(1 – t) f₀(s)+tx₀)

我们利用r 与这个同伦, 可以构建 S¹ 上的同伦:rf₀ ~ x₀,具体来说这个同伦是 rfₜ .

从f₀ 的任意性,我们立刻得到 π(S¹) 平凡,而根据常识, π(S¹) ≅ Z,矛盾, Q.E.D.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字5个月前
文清散文 连载中
文清散文
—抺忧伤
散文形式
1.9万字4个月前
星河为灯 连载中
星河为灯
冥夜90410
姜瑜是惊悚世界无限流副本由怨念产生的章鱼鬼怪,因为年少轻狂,去挑衅劳什子大佬被绑定为宠物带出副本,从此走上打工人的道路,开启了他跌宕起伏(苦......
2.9万字3个月前
日常做梦指南 连载中
日常做梦指南
庄馨
许多个小短篇故事,轻松随意,建议睡前食用摘选:一.我知道源哥搞音乐的是艺术家,搞艺术的呢就会经常感性,经常忧郁,不过当初的我只觉得,他那么阳......
0.5万字2个月前
别了亲爱的:用情至深 连载中
别了亲爱的:用情至深
不知名诗人
我又活了,拥有了新的身份,唯一没变的是对她的爱,这次我绝对要保护好她,熟悉的环境,重走一遍的剧情,我绝对不会让她再受伤了,我不会再唯唯诺诺,......
1.4万字1个月前
思念在左爱在右 连载中
思念在左爱在右
蔷影
快穿长篇,孰强孰弱,好难猜哦~
0.8万字6天前