参考文献:
81. See Chevalley, ‘Albert Lautman et le souci logique’, p. 50.
82. Lautman,Essai sur l’unité, p. 203.
83. Lautman,Essai sur l’unité, p. 290.
84. Petitot, ‘La dialectique de la vérité’, p. 86.
85. Lautman,Essai sur l’unité, p. 211.
86. Lautman, Essai sur l’unité, p. 210.
87. Lautman, Essai sur l’unité, p. 212.
88. Lautman, Essai sur l’unité, p. 212.
89. Lautman, Essai sur l’unité, p. 142.
90. Lautman, Essai sur l’unité, p. 143.
91. Lautman, Essai sur l’unité, p. 212.
92. Lautman, Essai sur l’unité, p. 210.
93. Lautman, Essai sur l’unité, p. 205.
94. Lautman, Essai sur l’unité, p. 210.
95. Lautman, Essai sur l’unité, p. 142.
96. Lautman, Essai sur l’unité, p. 205.
97. Lautman,Essai sur l’unité, p. 142.
98. Lautman,Essai sur l’unité, p. 40.
199. Barot, ‘L’objectivité mathématique selon Albert Lautman’, p. 22.
100. Lautman,Essai sur l’unité, p. 213.
101. Lautman,Essai sur l’unité, pp. 32, 45–7. The ‘global conception of the analytic function that one fi nds with Cauchy and Riemann’ (p. 32) is posed as a conceptual couple in relation to Weierstrass’ approximation theorem, which is a local method of determining an analytic function in the neighbourhood of a complex point by a power series expansion, which, by a series of local operations, converges around this point (pp. 45–7).
102. The same conceptual couple is illustrated in geometry by the connections between ‘topological surface properties and their local differential properties’, that is, between the curvature of the former and the determination of second derivatives of the latter, both in the ‘metric formulation’ of geoemtry in the work of Hopf (Lautman,Essai sur l’unité, pp. 40–3) and ‘in its topological formulation’ in Weyl and Cartan’s theory of closed groups (pp. 43–4).
103. See Barot, ‘L’objectivité mathématique selon Albert Lautman’, p. 10; Chevalley, ‘Albert Lautman et le souci logique’, pp. 63–4.
104. Lautman,Essai sur l’unité, p. 209.
105. For an account of the role that this example of the local–global conceptual couple plays in Deleuze see Simon Duffy, ‘The Mathematics of Deleuze’s Differential Logic and Metaphysics’, in Duffy (ed.),Virtual Mathematics: The Logic of Difference.
106. Lautman,Essai sur l’unité, p. 288.
107. Lautman,Essai sur l’unité, p. 209.
108. Lautman,Essai sur l’unité, p. 288.
109. Loi in Lautman,Essai sur l’unité, p. 12.
110. Petitot, ‘La dialectique de la vérité’, p. 99.
111. Lautman,Essai sur l’unité, p. 22.
112. Petitot, ‘La dialectique de la vérité’, p. 113.
113. Petitot, ‘La dialectique de la vérité’, p. 80.
114. Petitot, ‘La dialectique de la vérité’, p. 113. See also Barot, ‘L’objectivité mathématique selon Albert Lautman’, pp. 6, 16 n. 1.
For a Deleuzian account of an alternative speculative logic to the Hegelian dialectical logic, one that implicates the work of Lautman, see Simon Duffy,The Logic of Expression: Quality, Quantity and Intensity in Spinoza, Hegel and Deleuze (Aldershot: Ashgate, 2006), pp. 74–91, 254–60.
115. Jean-Michel Salanskis, ‘Idea and Destination’, inDeleuze: A Critical Reader, edited by P. Patton (Cambridge: Blackwell, 1996); Salanskis, ‘Pour une épistémologie de la lecture’, Alliage 35–6 (1998) <http:// www.tribunes.com/tribune/alliage/accueil.htm>; Daniel W. Smith, ‘Mathematics and the Theory of Multiplicities: Deleuze and Badiou Revisited’, Southern Journal of Philosophy 41:3 (2003), pp. 411–49; Duffy, ‘The Mathematics of Deleuze’s Differential Logic and Metaphysics’.
116. Petitot, ‘La dialectique de la vérité’, p. 87 n. 14.
117. See Salanskis, ‘Pour une épistémologie de la lecture’ (in particular the section entitled ‘Contre-temoinage’).
118. Salanskis, ‘Idea and Destination’, p. 64.
119. When Deleuze and Guattari comment on ‘the “intuitionist” school (Brouwer, Heyting, Griss, Bouligand, etc.),’ they insist that it ‘is of great importance in mathematics, not because it asserted the irreducible rights of intuition, or even because it elaborated a very novel constructivism, but because it developed a conception of problems, and of a calculus of problems that intrinsically rivals axiomatics and proceeds by other rules (notably with regard to the excluded middle)’ (TP 570 n. 61). Deleuze extracts this concept of the calculus of problems itself as a mathematical problematic from the episode in the history of mathematics when intuitionism opposed axiomatics. It is the logic of this calculus of problems that he then redeploys in relation to a range of episodes in the history of mathematics that in no way binds him to the principles of intuitionism. See Duffy, ‘Deleuze and Mathematics’, in Duffy (ed.),Virtual Mathematics: The Logic of Difference, pp. 2–6.
120. For a brief account of Deleuze’s enagement with Galois see Gilles Châtelet, ‘Interlacing the Singularity, the Diagram and the Metaphor’, trans. S. Duffy, in Duffy (ed.),Virtual Mathematics: The Logic of Difference, p. 41; Salanskis, ‘Mathematics, Metaphysics, Philosophy’, in Virtual Mathematics pp. 52–3; Salanskis, ‘Pour une épistémologie de la lecture’; Daniel W. Smith, ‘Axiomatics and Problematics as Two Modes of Formalisation: Deleuze’s Epistemology of Mathematics’, in Duffy (ed.), Virtual Mathematics: The Logic of Difference, pp. 159–63.
121. See Salanskis, ‘Pour une épistémologie de la lecture’.
122. See Salanskis, ‘Pour une épistémologie de la lecture’.
123. See Duffy,The Logic of Expression, where the complex concept of the logic of different/ciation is demonstrated to be characteristic of Deleuze’s ‘philosophy of difference’.
124. Lautman,Essai sur l’unité, p. 209.
125. For a critical account of Lautman’s engagement with Kant see Petitot, ‘La dialectique de la vérité’. See also Salanskis, ‘Idea and Destination’, for an account of the signifi cance of Kant for Deleuze’s engagement with Lautman. See Nathan Widder, ‘The rights of Simulacra: Deleuze and the Univocity of Being’,Continental Philosophy Review 34 (2001), pp. 437–53 for an account of Deleuze’s reversal of Platonism and its implied idealism.
126. See Smith, ‘Axiomatics and Problematics’, for an account of the operation of the relation between Royal and nomad science and between axiomatics and problematics in Deleuze’s work.
127. Lautman,Essai sur l’unité, p. 87.
128. See Duffy, ‘Schizo-Math’,Angelaki 9: 3, 2004, pp. 199–215 and ‘The Mathematics of Deleuze’s Differential Logic and Metaphysics’.
129. Lautman,Essai sur l’unité des mathématiques, p. 195.
数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。