数学联邦政治世界观
超小超大

Dedekind分割及Dedekind定理

戴德金原理

目录

Dedekind分割 ▹

分割 ▹

Dedekind分割 ▹

Dedekind定理 ▹

定理内容 ▹

定理证明 ▹

参考资料 ▹

电子资源 ▹

Dedekind分割

分割

分割定义:对于数域 K ,存在两个集合 A,B 满足:

• A,B ≠ ф

• A∪B=K

• A∩B=ф

则称A,B为数域K 上的一个分割,记为 {A,B}

Dedekind分割

当A,B 满足分割的定义时,若同时还满足:

• 集合 A "向下封闭连续",即:对于任意 ∀x ∈ A ,∀y<x,都有 y ∈ A。且A“连续”如 [1,2)∪[3,4] 不符合要求; [1,8] 满足条件;

• 集合 A 中"无最大元素",即:对 ∀x ∈ A,∃y ∈ A,s.t. x<y .

则称{A,B} 为数域 K 的一个Dedekind分割,记为 A|B ,其中集合 A 称为该分割的下集, B 为上集。

例题:证明 √2 是无理数。

证明,在有理数域Q 上构造两集合 A,B ,其中 A={x|x<√2,x ∈ Q},B={x|x ≥ √2,x ∈ Q}

其中A,B 满足:

• A,B ≠ ф

• A∪B=Q

• A∩B=ф

• ∀x ∈ A,∀y<x<√2,故 y ∈ A。且A“连续”

• 对∀x ∈ A,∃y ∈ A,s.t. x<y (*)

故A|B 为 Q 的一个Dedekind分割A|B 。

2p+2

任取p>0,p ∈ Q,q=───

p+2

.下证 √2 即不在集合 A 中,又不在集合 B 中:

2 – p²

由于q – p=───,

p+2

2(p² – 2)

q² – 2=───

(p+2)²

2 – p²

1. 若 p ∈ A ,则 q – p=───>0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───<0

(p+2)²

,故 q ∈ A ,故 A 无最大元素

2 – p²

2. 若 p ∈ B ,则 q – p=───<0

p+2

2(p² – 2)

,即 p>q 。又 q² – 2=───>0

(p+2)²

,故 q ∈ B ,故 B 无最小元素

由以上构造可知,A 无最大元素,B 无最小元素,所以 √2 ∉ A,√2 ∉ B,则 √2 ∉ A∪B=Q,

所以√2 是无理数。

现说明 * 成立:

将x 和 √2 写成十进制小数:

x=x₀.x₁x₂x₃ . . . xₙ000...(设x有n位小数,后面都是0)

√2=y₀,y₁y₂y₃ . . . yₙ...

将他们对应的项逐一比对。

x₀+y₀

若x₀ ≠ y₀,取 y=───

2

若x₀=y₀ ,设小数点后前 k 项相等,第 k+1 项不等,则取 xₖ₊₁ 和 yₖ₊₁ ,令

xₖ₊₁+yₖ₊₁

c=────

2

令y=x₀.x₁x₂x₃. . .xₖc,此时 x<y<√2,且 y ∈ Q

Dedekind定理

定理内容

定理:实数域R 上的任一Dedekind分割的上集均有最小元素。

即对于R 上的任一分割A|B ,集合 B 均有最小元素。

定理证明

做Dedekind分割A|B

(不严格证明,有点循环论证的感觉)设A B被点 x=x₀ 分割开, A={x|x<x₀,x ∈ R},B={x|x ≥ x₀,x ∈ R}

考虑点x=x₀ 是否在集合 B 中。

由于R=Q∪R\Q,Q∩R\Q=ф

所以x₀ ∈ B ,所以 B 中有最小元素。

严格证明请参考

Rudin《数学分析》,Ayumu《数学分析》等教材。

参考资料

1.Rudin《数学分析》

2.Ayumu《数学分析》

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

穿书后恶毒女配只想修仙 连载中
穿书后恶毒女配只想修仙
风亿星辰
顾染考研猝死穿书了,《瑶光修仙记》是一本集‘竹马打不过天降’‘仙门团宠’‘恶毒小师妹’为一体的披着修仙文皮的言情小说。而她自然不是穿成了女主......
35.2万字3周前
茈椛 连载中
茈椛
凌苪玥
这是一个为了修为连人性都可以丢去的世界,但女主不清楚,在某天她得知了自己椛人的身份,她乐观应对,故事由此展开
0.3万字1周前
快穿:娇软万人迷 连载中
快穿:娇软万人迷
江鱼不是鱼
全员单箭头,一见钟情梗,万人迷,脑子寄存—
2.3万字6天前
all源:疯批实验体 连载中
all源:疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.7万字4天前
(无限流)我就是想交个朋友 连载中
(无限流)我就是想交个朋友
麦穗花
【欢迎来到无限世界[域],在这里,特殊能力唾手可得,死亡更不是梦想,随时随地,身临其境,尖叫和欢笑,惊骇与心动,让我们——娱乐至死!】(ㅍ_......
1.3万字3天前
幻想:不公定律—无罪世界 连载中
幻想:不公定律—无罪世界
维治托劳斯
嘈杂的声音充斥在教室中,所有人都嘻皮笑脸的,一切都很和谐,但是在这片虚伪的和谐中,藏着许多不为人知的恶劣——对同学的另眼相待,谣言乱飞,校园......
0.3万字昨天