数学联邦政治世界观
超小超大

性质跟结构的区别

本文参考了 nlab: stuff, structure, property

性质跟结构都是对一组对象而言的,比如集合、代数等,而当我们考虑满足某某性质或者有某某结构的对象时,这些对象就在原本的对象中形成了一个子集,在这种意义下我们确实难以区别“性质”跟“结构”这两个词。

假设我们拥有一组对象,我们不能单单考虑对象本身,还应该考虑对象之间的态射,不过我们真正要考虑的是对象之间的同构,因为正是同构给出了对象之间本质,这意思是它告诉我们哪些对象是一样的,哪些是不一样的。所以我们得考虑这组对象所形成的广群 (groupoid). 然后考虑性质 P 或者结构 S,满足性质 P 跟结构 S 的对象们会在这个广群中形成两个子范畴,在子范畴里面的态射也就是同构,它们得保持这种性质 P 或者结构 S. 比如,等下我们会知道的拓扑对于一个集合而言是结构 S,集合之间的同构只要是双射就好了,但拓扑空间之间的同构得是保持拓扑结构的同胚,这不能是随便一个双射。

“性质”比“结构”更内蕴 (intrinsic).

如果根据某条断言 X (比如具有拓扑,有单位元等等) 我们得到原来范畴C 中的一个子范畴 D ,这个子范畴里面的同构恰好等于原来范畴里面的同构即

lsomᴅ(α,b)=lsomᴄ(α,b)

那么 X 就是一个性质 P. 因此我们可以将性质理解为可以被对象之间的同构自动保持的某类断言。

如果我们有真包含

lsomᴅ(α,b) ⊂ lsomᴄ(α,b)

那么 X 就是一个结构 S.

那么很显然了,我们上面说的具有拓扑则是一个结构。而假如你要将ℝ 上的有限维向量空间变成一个线性赋范空间,那么这就变成了一个性质而不是结构了,这是泛函里面的一个定理。

交换性对于一个结合代数而言也是一个性质。

单位元对于一个结合代数而言也是一个性质,这个对高阶的结合代数比如Eₙ-algebra 也对。

在 Lurie 的 Higher Algebra 里面,他还证明了稳定性 (stability) 对无穷范畴而言也是一个性质

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

雅家:六大天王 连载中
雅家:六大天王
77小X
原创男主角女主角
4.0万字6个月前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字6个月前
全民领主:来自东方的公主殿下 连载中
全民领主:来自东方的公主殿下
雪雪宝儿
无尽大陆,实力为尊。她本是一个普通的女孩儿,却不小心穿越到这神秘的蓝星,进行万族争霸。幸好幸好,有地球妈妈和祖国妈妈给不幸走丢的小姑娘加bu......
0.8万字5个月前
小刘的发疯日常 连载中
小刘的发疯日常
紫薯LO
神神经经,没有烦恼!啊啊啊啊!
0.5万字2个月前
原来你是审判官? 连载中
原来你是审判官?
温柔淑女就是我
正义,智慧,和平,战争。四大界地明争暗斗,最后赢家是谁?在这个时代,人民才是主导。推翻不义,推翻非现实统治!这是个和平年代,可天下分久必合合......
11.4万字6天前
特种娇妻不好惹 连载中
特种娇妻不好惹
温水煮
一个平平无奇却总认为自己特别的女子遇上一个兵哥一段奇缘的故事(书中修改中)
8.7万字6天前