数学联邦政治世界观
超小超大

双伽马函数

双伽马函数

定义

双伽马函数定义为伽马函数的对数导数

Γ'

ψ(s)=─ (s)

Γ

递推公式

根据ψ函数的定义可知

Γ' [sΓ(s)]'

ψ(s+1)=─ (s+1)=───

Γ sΓ(s)

sΓ'(s)+Γ(s) Γ' 1 1

=────=─ (s)+─=ψ(s)+─

sΓ(s) Γ 2 s

因此

1

ψ(s+1)=ψ(s)+─

s

反射公。

根据余元公式可知

π

Γ(s)Γ(1 – s)=───

sin πs

因此

lnΓ(s)+lnΓ(1 – s)=ln π – ln sin π s

等式两边对 s 求导

Γ' Γ'

─(s) – ─(1 – s)=–π cot πs

Γ Γ

因此

ψ(1 – s) – ψ(s)=π cot πs

欧拉常数

欧拉常数被定义为调和级数与对数极限之差

ɴ 1

γ=lim (∑ ─ – ln N)

ₙ₌₁ n

显然我们能有多种方法改写这个式子。

观察以下积分

1

─=∫₀¹tˣ⁻¹dt=∫₀∞e⁻ˣᵗdt

n ︸

Ը{1}(x)

我们定义

M(x)=∫₀¹tˣ⁻¹dt

{

L(x)=Ը{1}(x)

调和级数的积分表达式

调和级数是调和函数的极限

ₖ 1

H=lim ∑ ─=lim Hₖ

k→∞ ₙ₌₁ n

Hₖ

由于

ₖ 1 ₖ ₖ

Hₙ=∑ ─=∑ L(n)=∑ ∫₀∞e⁻ⁿᵗdt=∫₀∞↓

ₙ₌₁ n ₙ₌₁ ₙ₌₁

(∑e⁻ⁿᵗ)dt

ₙ₌₁

右侧积分内级数为等比数列,显然

ₖ 1 – e⁻ᵏᵗ

∑ e⁻ⁿᵗ=e⁻ᵗ .────

ₙ₌₁ 1 – e⁻ᵗ

出于收敛性考虑,我们暂时不取极限,直接代入即得

ₖ 1 1 – e⁻ᵏᵗ

∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

亦可通过黎曼ζ函数得到该结果

1

H=lim ζ(s)=lim ── ∫₀∞ ↓

s→1 s→1 Γ(s)

tˢ⁻¹ dt

─── dt=∫₀∞ ───

eᵗ – 1 eᵗ – 1

对数的积分表达式

对数可表示为积分

dt

ln k=∫₁ᵏ ─

t

1

欲继续优化,考虑 ─=Ը(t) ,即

t

dt

∫₁ᵏ ─=∫₁ᵏ Ը(t)dt

t

=∫₁ᵏ dt ∫₀∞ e⁻ᵗˣ dx

=∫₀∞ dx ∫₁ᵏ e⁻ᵗˣ dt

e⁻ˣ – e⁻ᵏˣ

=∫₀∞ ───── dx

x

我们能够交互积分顺序,皆因两积分都是收敛的

于是

e⁻ˣ – e⁻ᵏˣ

ln k=∫₀∞ ──── dx

x

欧拉常数的积分表达式

根据欧拉常数的定义可知

ₖ 1

γ=lim (∑ ─ – ln k)

k→∞ ₙ₌₁ n

1 – e⁻ᵏᵗ

=lim (∫₀∞ ─── dt

k→∞ eᵗ – 1

Hₖ

e⁻ᵗ – e⁻ᵏᵗ

– ∫₀∞ ──── dt)

t

ln k

e⁻ᵗ e⁻ᵗ

=∫₀∞ ─── dt – ∫₀∞ ─── dt

1 – eᵗ t

e⁻ᵗ e⁻ᵗ

=∫₀∞ (─── – ───)

1 – e⁻ᵗ t

e⁻ᵗ

该公式表明 : 调和级数 ∫₀∞ ──

1 – e⁻ᵗ

e⁻ᵗ

与对数极限 ∫₀∞ ─ dt之差为常数。

t

双伽马函数的积分表达式

刚才我们已得到调和函数的积分表达式

ₖ 1 1 – e⁻ᵏᵗ

Hₖ=∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

已知双伽马函数的级数表达式‬

∞ 1 1

ψ(s+1)=–γ+∑ (─ – ───)

ₙ₌₁ n n+s

右侧级数即为调和函数

∞ 1 1 ∞ 1

∑ (─ – ──)=∑ ─ ↓

ₙ₌₁ n n+s ₙ₌₁ n

∞ 1 ₛ 1 1 – e⁻ˢᵗ

– ∑ ───=∑ ─=∫₀∞ ─── dt

ₙ₌₁ n+s ₙ₌₁ n eˡ – 1

Hₛ

将欧拉常数的积分表达式代入即得

e⁻ᵗ e⁻ˢᵗ

ψ(s+1)=∫₀∞(─ – ──) dt

t eᵗ – 1

双伽马函数的其他积分式

我们想推导出一个便于计算的双伽马函数积分式,仍然从定义入手。

根据定义

∞ 1 1

ψ(s)=–γ+∑ (── – ──)

ₙ₌₀ n+1 n+s

考虑用M(x) 替代级数内的两个分式

ψ(s)=–γ+∑ [M(n+1) – M(n+s)]

ₙ₌₀

=–γ+∑ (∫₀¹tⁿdt – ∫₀¹tⁿ⁺ˢ⁻¹dt)

ₙ₌₀

=–γ+∑ ∫₀¹tⁿ(1 – tˢ⁻¹)dt

ₙ₌₀

=–γ+∫₀¹(1 – tˢ⁻¹)(∑tⁿ)dt

ₙ₌₀

1 – tˢ⁻¹

=–γ+∫₀¹ ──── dt

1 – t

因此

1 – tˢ⁻¹

ψ(s)=–γ+∫₀¹ ─── dt

1 – t

1

若s=─,∀n ∈ ℕ,n>1,则

n

1 1 – t

ψ(─)=–γ – n ∫₀¹ ─── tⁿ⁻²dt

n 1 – tⁿ

当n=2 时

1 1 – t

ψ(─)=–γ – 2 ∫₀¹ ─── dt=–γ – 2 ↓

n 1 – t²

dt

∫₀¹ ───=–γ – 2 ln 2

1+t

与黎曼ζ函数的关系

根据定义可知

∞ 1 1

ψ(s+1)=–γ+∑ (── – ──) dt

ₙ₌₁ n n+s

∞ s 1

=–γ+∑ ─ · ──

ₙ₌₁ n² s

1+─

n

∞ s ∞ (–s)ᵏ

=–γ+∑ ─ ∑ ───

ₙ₌₁ n² ₖ₌₀ nᵏ

∞ ∞ 1

=–γ+s∑(–s)ᵏ∑ ───

ₖ₌₀ ₙ₌₁ nᵏ⁺²

ζ(k+2)

=–γ+s∑(–s)ᵏζ(k+2)

ₖ₌₀

=–γ – ∑ζ(k+1)(–s)ᵏ

ₖ₌₁

亦即

ψ(s+1)=–γ – ∑ζ(k+1)(–s)ᵏ

ₖ₌₁

或者

ψ(s+1)+γ ∞

─────=∑ζ(2+n)(–t)ⁿ

t ₙ₌₀

根据拉马努金定理可得

ψ(t+1)+γ π

∫₀∞ ───── dt=── ζ(2 – s)

t²⁻ˢ sin πs

例如

ψ(t+1)+γ π

∫₀∞ ───── dt=─

√t 2

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

心灵山等雪 连载中
心灵山等雪
温💔柔🦋
讲述了一个叫顾思耀的皇子爱上了一个叫沈念心的女孩,在一次的大战中,顾思耀不想连累沈念心,骗走了她,自己却失去了生命,沈念心抱着顾思耀的身体,......
2.3万字7个月前
维空战记 连载中
维空战记
不段
1839年,原本独立的十大宇宙在这一年的2月20日,各宇宙掌握了可以互相穿越于对方宇宙的技术。于是各宇宙为了不同的目的展开了战争,史称“维度......
5.8万字7个月前
国乒小团宠 连载中
国乒小团宠
爱吃香菜冰淇淋
团宠柒柒的国乒生活请勿上升真人梦女文而已啦
5.5万字6个月前
恶霸军团前传 连载中
恶霸军团前传
天下第一帅草
恶霸军团的各种前传。
0.5万字6个月前
入阴人 连载中
入阴人
萧逾魔王
0.3万字5个月前
愿太阳 连载中
愿太阳
几年愿
重要的事说三遍,无恋爱无恋爱无恋爱主人公是一颗星星是一个童话类的文比较治愈讲述主人公星日原先是一颗很开朗的星星但后来因外婆去世又遭受许多失落......
0.1万字4个月前