数学联邦政治世界观
超小超大

双伽马函数

双伽马函数

定义

双伽马函数定义为伽马函数的对数导数

Γ'

ψ(s)=─ (s)

Γ

递推公式

根据ψ函数的定义可知

Γ' [sΓ(s)]'

ψ(s+1)=─ (s+1)=───

Γ sΓ(s)

sΓ'(s)+Γ(s) Γ' 1 1

=────=─ (s)+─=ψ(s)+─

sΓ(s) Γ 2 s

因此

1

ψ(s+1)=ψ(s)+─

s

反射公。

根据余元公式可知

π

Γ(s)Γ(1 – s)=───

sin πs

因此

lnΓ(s)+lnΓ(1 – s)=ln π – ln sin π s

等式两边对 s 求导

Γ' Γ'

─(s) – ─(1 – s)=–π cot πs

Γ Γ

因此

ψ(1 – s) – ψ(s)=π cot πs

欧拉常数

欧拉常数被定义为调和级数与对数极限之差

ɴ 1

γ=lim (∑ ─ – ln N)

ₙ₌₁ n

显然我们能有多种方法改写这个式子。

观察以下积分

1

─=∫₀¹tˣ⁻¹dt=∫₀∞e⁻ˣᵗdt

n ︸

Ը{1}(x)

我们定义

M(x)=∫₀¹tˣ⁻¹dt

{

L(x)=Ը{1}(x)

调和级数的积分表达式

调和级数是调和函数的极限

ₖ 1

H=lim ∑ ─=lim Hₖ

k→∞ ₙ₌₁ n

Hₖ

由于

ₖ 1 ₖ ₖ

Hₙ=∑ ─=∑ L(n)=∑ ∫₀∞e⁻ⁿᵗdt=∫₀∞↓

ₙ₌₁ n ₙ₌₁ ₙ₌₁

(∑e⁻ⁿᵗ)dt

ₙ₌₁

右侧积分内级数为等比数列,显然

ₖ 1 – e⁻ᵏᵗ

∑ e⁻ⁿᵗ=e⁻ᵗ .────

ₙ₌₁ 1 – e⁻ᵗ

出于收敛性考虑,我们暂时不取极限,直接代入即得

ₖ 1 1 – e⁻ᵏᵗ

∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

亦可通过黎曼ζ函数得到该结果

1

H=lim ζ(s)=lim ── ∫₀∞ ↓

s→1 s→1 Γ(s)

tˢ⁻¹ dt

─── dt=∫₀∞ ───

eᵗ – 1 eᵗ – 1

对数的积分表达式

对数可表示为积分

dt

ln k=∫₁ᵏ ─

t

1

欲继续优化,考虑 ─=Ը(t) ,即

t

dt

∫₁ᵏ ─=∫₁ᵏ Ը(t)dt

t

=∫₁ᵏ dt ∫₀∞ e⁻ᵗˣ dx

=∫₀∞ dx ∫₁ᵏ e⁻ᵗˣ dt

e⁻ˣ – e⁻ᵏˣ

=∫₀∞ ───── dx

x

我们能够交互积分顺序,皆因两积分都是收敛的

于是

e⁻ˣ – e⁻ᵏˣ

ln k=∫₀∞ ──── dx

x

欧拉常数的积分表达式

根据欧拉常数的定义可知

ₖ 1

γ=lim (∑ ─ – ln k)

k→∞ ₙ₌₁ n

1 – e⁻ᵏᵗ

=lim (∫₀∞ ─── dt

k→∞ eᵗ – 1

Hₖ

e⁻ᵗ – e⁻ᵏᵗ

– ∫₀∞ ──── dt)

t

ln k

e⁻ᵗ e⁻ᵗ

=∫₀∞ ─── dt – ∫₀∞ ─── dt

1 – eᵗ t

e⁻ᵗ e⁻ᵗ

=∫₀∞ (─── – ───)

1 – e⁻ᵗ t

e⁻ᵗ

该公式表明 : 调和级数 ∫₀∞ ──

1 – e⁻ᵗ

e⁻ᵗ

与对数极限 ∫₀∞ ─ dt之差为常数。

t

双伽马函数的积分表达式

刚才我们已得到调和函数的积分表达式

ₖ 1 1 – e⁻ᵏᵗ

Hₖ=∑ ─=∫₀∞ ──── dt

ₙ₌₁ n eᵗ – 1

已知双伽马函数的级数表达式‬

∞ 1 1

ψ(s+1)=–γ+∑ (─ – ───)

ₙ₌₁ n n+s

右侧级数即为调和函数

∞ 1 1 ∞ 1

∑ (─ – ──)=∑ ─ ↓

ₙ₌₁ n n+s ₙ₌₁ n

∞ 1 ₛ 1 1 – e⁻ˢᵗ

– ∑ ───=∑ ─=∫₀∞ ─── dt

ₙ₌₁ n+s ₙ₌₁ n eˡ – 1

Hₛ

将欧拉常数的积分表达式代入即得

e⁻ᵗ e⁻ˢᵗ

ψ(s+1)=∫₀∞(─ – ──) dt

t eᵗ – 1

双伽马函数的其他积分式

我们想推导出一个便于计算的双伽马函数积分式,仍然从定义入手。

根据定义

∞ 1 1

ψ(s)=–γ+∑ (── – ──)

ₙ₌₀ n+1 n+s

考虑用M(x) 替代级数内的两个分式

ψ(s)=–γ+∑ [M(n+1) – M(n+s)]

ₙ₌₀

=–γ+∑ (∫₀¹tⁿdt – ∫₀¹tⁿ⁺ˢ⁻¹dt)

ₙ₌₀

=–γ+∑ ∫₀¹tⁿ(1 – tˢ⁻¹)dt

ₙ₌₀

=–γ+∫₀¹(1 – tˢ⁻¹)(∑tⁿ)dt

ₙ₌₀

1 – tˢ⁻¹

=–γ+∫₀¹ ──── dt

1 – t

因此

1 – tˢ⁻¹

ψ(s)=–γ+∫₀¹ ─── dt

1 – t

1

若s=─,∀n ∈ ℕ,n>1,则

n

1 1 – t

ψ(─)=–γ – n ∫₀¹ ─── tⁿ⁻²dt

n 1 – tⁿ

当n=2 时

1 1 – t

ψ(─)=–γ – 2 ∫₀¹ ─── dt=–γ – 2 ↓

n 1 – t²

dt

∫₀¹ ───=–γ – 2 ln 2

1+t

与黎曼ζ函数的关系

根据定义可知

∞ 1 1

ψ(s+1)=–γ+∑ (── – ──) dt

ₙ₌₁ n n+s

∞ s 1

=–γ+∑ ─ · ──

ₙ₌₁ n² s

1+─

n

∞ s ∞ (–s)ᵏ

=–γ+∑ ─ ∑ ───

ₙ₌₁ n² ₖ₌₀ nᵏ

∞ ∞ 1

=–γ+s∑(–s)ᵏ∑ ───

ₖ₌₀ ₙ₌₁ nᵏ⁺²

ζ(k+2)

=–γ+s∑(–s)ᵏζ(k+2)

ₖ₌₀

=–γ – ∑ζ(k+1)(–s)ᵏ

ₖ₌₁

亦即

ψ(s+1)=–γ – ∑ζ(k+1)(–s)ᵏ

ₖ₌₁

或者

ψ(s+1)+γ ∞

─────=∑ζ(2+n)(–t)ⁿ

t ₙ₌₀

根据拉马努金定理可得

ψ(t+1)+γ π

∫₀∞ ───── dt=── ζ(2 – s)

t²⁻ˢ sin πs

例如

ψ(t+1)+γ π

∫₀∞ ───── dt=─

√t 2

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

云与夜 连载中
云与夜
琪琪拉
哎嘿!甜甜甜!轻微ABO
2.3万字5个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字4个月前
龙卷风之后 连载中
龙卷风之后
飞向天宏
南海的某夏天,一场突如其来的龙卷风,这是五千罕见的超强风,它所之处,一片狼藉……
12.1万字3个月前
春风酌酒 连载中
春风酌酒
不想更新的一天
我以春风酌酒,愿故友永宁。(禁止任何形式的抄袭,以及投喂AI等一系列的侵权操作。)
6.9万字1个月前
暮秋雪与云逸永恒的守护 连载中
暮秋雪与云逸永恒的守护
昕愛凌
暮秋雪,神界神女,为拯救苍生耗尽神力而死。临终前,她唯一的遗憾是未曾拥有爱情。于是,她重生为凡间孩童,找到挚友恬莎寻求庇护。与此同时,她的三......
7.5万字1个月前
天圆地方,太阳之女 连载中
天圆地方,太阳之女
烧麦寒柒
天圆地方,女尊世界。太阳之女,涅槃重生……
1.0万字1周前