数学联邦政治世界观
超小超大

Yoneda引理

设F:C → Set是一个(协变)函子,其中C是一个局部小范畴。那么对C的任意对象A,有Nat(hᴀ,F)≅F(A),其中hᴀ=Hom(A,–),“≅“ 表示集合范畴内同构。对偶地,若C:Cᵒᵖ → Set是一个逆变函子,则Nat(hᴬ,G)≅G(A),其中hᴬ=Hom(–,A)。

它表明任何一个局部小范畴C 都能嵌入函子范畴 Setᶜᵒᵖ中,即所谓的Yoneda嵌入,对应关系如下: A↦Hom(–,A) (on objects),(f:A → B)↦Hom(–,f) (on morphisms)。这使得成为研究代数几何与表示论的一个重要工具。另外,除了Cayley定理,我上面引用的问题下,有答主提到,幺半范畴的严格化定理也能通过Yoneda引理得到,除此之外还有微分几何与超同调代数中的结论在实质上也是Yoneda引理。

而且这还没完,Yoneda引理可以继续推广。我们可以将条件中的局部小范畴C 替换成一个局部小且完备的对称闭幺半范畴 ν=(ν₀,⨂,l,α,λ,ρ) 上的充实范畴 A ,从而将Yoneda引理推广成强Yoneda引理。

给定一个ν-函子 F:A → ν 及一个 A-对象 K ,我们有一个对于 A 的 ν-自然的映射 Fᴋᴀ:A(K,A) → [FK,FA],它在伴随 ν₀(Ⅹ,[Y,Z]) ≅ ν₀(Y,[X,Z]) 下的转换 фᴀ:FK → [A(K,A),FA] 也是 ν-自然的。强Yoneda引理宣称, фᴀ 将 FK 表示为end ∫ᴀ[A(K,A),FA] ,使得我们有同构 ф:FK≅[A,ν](A(K,–),F)

这里参照的是G.M.Kelly的Basic Concepts of Enriched Category Theory的2.4节 The (strong) Yoneda lemma for V-CAT; the Yoneda embedding中的记号。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

美人虞 连载中
美人虞
煎馍馍
灵族怎可喜欢上深海里的鲛人,跨物种的恋爱,这是会乱套的。旁人眼中,那位明媚张扬的女孩不信邪般的与鲛人谈恋爱,简直是无可救药。它们不知道女孩有......
1.9万字5个月前
CH:假 连载中
CH:假
我推法法
世界真真假假假假真真,真亦是假假亦是真,真假如何可要看君是如何看待
2.4万字5个月前
我嘞个豆啊循环 连载中
我嘞个豆啊循环
云开半雾
以后再说吧反正剧情自我感觉良好哈只是文笔不太好如果有人看可以看见意想不到的反转哈
0.9万字2个月前
救命!这个外星人统治的世界! 连载中
救命!这个外星人统治的世界!
_白控
我,幸星海,需要拯救即将被外星人统治的水域。在白的帮助下,我来到了外星人统治的世界。将人类看做宠物?我不敢想下去了……
7.6万字2个月前
星星在闪耀时,是我在对你说话 连载中
星星在闪耀时,是我在对你说话
绪緖
这是一本虐文,不是很虐,最后除了女二都死了
0.1万字1个月前
水灵:叶罗丽之流水落花 连载中
水灵:叶罗丽之流水落花
謦冰熹
⭕️本篇小说和之前的X系列没有任何关联,也和其它“之”系列的没有任何关联!!!⭕️本篇小说纯属虚构如有雷同纯属巧合⭕️主要角色:女主(主角)......
7.0万字2周前