数学联邦政治世界观
超小超大

数学

1.康托定理‬

对任意集合X 都会存在一个基数比 X 更大的集合。

在X 是无穷集的情况,这揭露了超越无穷的世界。

2.Löwenheim–Skolem 定理

对任意一阶理论,如果其存在无穷模型,则存在任意基数的无穷模型,比如可数模型。

这揭露了那个超越无穷的世界只是一个海市蜃楼——在认知论上,在本体论上,则揭露了超穷世界是多么的超越认知,无法用语言指向,确定真实的不可数集。

3.Henkin 定理

对任意一阶理论,它是一致的当且仅当它存在模型。

Löwenheim–Skolem 定理是在一个超穷理论中,发现了一个一阶理论或许是不可数的自然模型,然后根据这个不可数的模型发现了该理论的可数模型。在这里先有不可数模型,再有可数模型,所以前者仍被认为是自然的,而后者属于生造的或限制的。

但 Henkin 定理并不需要额外假设模型存在,而是仅凭理论本身来构造一个完全切合理论的模型,这都不需要在一个超穷理论中证明,这样的模型甚至都可以在某种理想的计算机中被模拟出来(如利用理想的闭合时曲线作计算的理想计算机),可数模型就此夺回了它的自然感。

换言之,在本体论上超穷世界很可能并不存在,我们认知的超穷集合仅仅只是概念上的存在,在一个可数结构中形成的概念,而非真实的存在。亦或者反向思考,说明超穷世界在本体论上的超验深度越发深邃。

1.一阶理论:像 ZFC 这样的集合论都是一阶理论。

2.无穷模型:通俗的说,就像物理宇宙是物理理论的模型,集合论模型也被称作集宇宙。这个宇宙如果至少含有无穷个对象,则称其为无穷模型。

3.可数模型:仅含有可数个对象的宇宙,可数个是指≤ℵ₀个。

2.超穷理论:可以证明存在不可数集的足够使用的理论,下限如 KP+∃ℵ₁

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

外星少女在民国 连载中
外星少女在民国
忆轩孤梦
[这一本我更新的非常慢,原因是在于想完结其他本,然后再更新这个。先看其他的哦]【一本男女都可以看的小说】她是银河深处的紫幽星少女,身怀魔力。......
4.5万字6个月前
他说自己很棒 连载中
他说自己很棒
切迷
谨慎观看☝
0.6万字3个月前
水中月的镜中花 连载中
水中月的镜中花
尔年
除这个世界外,是否还有更多的平行世界?亦或着其他的世界线,过去,现在或者未来?这么做的目的是什么?为什么要这么做?宁子衿说,他好像是为了一个......
0.9万字2个月前
胡说,她才不是坏女人 连载中
胡说,她才不是坏女人
杜光连
江思雨从混沌中醒来就没有了记忆,是333带她来到了小世界中。系统333说只要让他的主人拥有了情欲,那江思雨就会恢复记忆,离开混沌,找回自由,......
7.2万字1个月前
奇思妙想,各种各类小说合集 连载中
奇思妙想,各种各类小说合集
king2003
此文不只有一个故事,很多故事,每一个故事都是短篇小说。第一篇:花心痞帅硬汉;季北辰VS独立理智坚韧冷艳美女;莫希。(现代言情,花心浪子遇真爱......
4.2万字1个月前
重返未来1999:跨越时空壁障的白龙 连载中
重返未来1999:跨越时空壁障的白龙
The fool_46540950765
0.4万字2周前