【artin代数_第二版_11.3.11】 R 是环, l 是多项式环 R[x] 的理想,它包含的所有非零元素的阶的最小值为 n,证明或反驳(prove or disprove): l 是主理想 ⇔ l 包含 n 阶首一多项式。
proof of⇐ : p(t)=tⁿ+rₙ₋₁tⁿ⁻¹+. . .rₒ ∈ l ,那么显然 (p(t)) ⊂ l ; 所有 α(t) ∈ l 都可以通过除法表示为 α(t)=p(t)q(t)+r(t) , 且 r(t) ∈ l ,所以 r(t)=0 ,所以 l ⊂ (p(t)) 。
⇐ ⇒
counterexample of⇒ : R=Z/4 , l=(2x) ,那么 x∉l 。
F 是域,多项式环 F[x] 的理想 l 都是主理想,可以由 l 中最低阶非零多项式生成,若这个最低阶多项式是首一多项式(monomial),则它是唯一的。
pf:假设p(t) 是 l 中最低阶多项式,那么 (p(t)) ⊂ l,而所有 α(t) ∈ l 都可以通过除法表示为 α(t)=p(t)q(t)+r(t) , 且 r(t) ∈ l,所以 r(t)=0 ,所以 l ⊂ (p(t)) 。这里 F[x] 和 R[x] 的区别就是非首一多项式 p(t) 也可以做除法,所以 F[x] 的理想可以这么简单。
数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。