数学联邦政治世界观
超小超大

幂级数环

【artin代数_第二版_11.2.2】 F 是域, p(t)=α₀+α₁t+α₂t²+. . . 是形式化的幂级数(formal power series)(不要求收敛),这些形式化的幂级数的集合记为 F[[t]] ,证明 F[[t]] 是环。

pf:证明F[[t]] 是环的方法可以参考多项式环 F[t] 的证明,形式化的幂级数和形式化的多项式区别在于形式化幂级数可以有无穷多项,这点对证明没有影响。

【artin代数_第二版_11.2.2】找出环 F[[t]] 的可逆元 (units)。

sol:环F[[t]] 的可逆元是所有 α₀ ≠ 0 的 p(t) ,这点不同于多项式环 F[t] (units 为 f(t)=α,α ≠ 0 )。形式化幂级数求逆元的过程就是“向后推”然后“抵消”,因为是无穷多项所以可以做到。

【artin代数_第二版_11.3.10】找出环 F[[t]] 的理想(ideal)。

sol: 假设l 是环 F[[t]] 的理想,每个 p(t) ∈ l 有最低次项,这个最低次数记为 mₚ ,例如 p(t)=3t+15t³ ,它的最低此项是 3t ,所以 mₚ=1 , l 中所有非零 p(t) 最低次数的最小值记为 m ,现在claim l=(tᵐ) 。

因为m 是所有非零 p(t) ∈ l 包含项的最低次,所以 p(t)=αₘtᵐ+αₘ₊₁tᵐ⁺¹+. . .=tᵐ(αₘ+αₘ₊₁t+. . .),括号中的部分是环 F[[t]] 中的元素,所以 l ⊂ (tᵐ) 。

假设q(t) ∈ l包含这个最低项 m 次项, 那么

q(t)=αₘtᵐ+αₘ₊₁tᵐ⁺¹+. . .=tᵐ(αₘ+αₘ₊₁t+. . .),αₘ ≠ 0,这里 αₘ+αₘ₊₁t+. . . 是 F[[t]] 的可逆元,所以 tᵐ=tᵐ(αₘ+αₘ₊₁t+. . . ) ((αₘ+αₘ₊₁t+. . .)的逆) ∈ l,所以(tᵐ) ⊂ l。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三人行之一:魔法列车的低语 连载中
三人行之一:魔法列车的低语
璃月非李月
魔幻小说作者某天突然的脑洞,有点发疯,自认为能到个小学水平#求评论!不拒绝吐槽但别过分了灵湖小学五年三班迎来了一个新班主任!但这位班主任的行......
4.3万字12个月前
兰式玉 连载中
兰式玉
匕首_27562892568598715
苏章是个杀手在执行任务时意外身亡,在睁眼就到了个陌生的地方,还绑定了万圣2.0系统,在个个小世界演绎角色。
1.6万字10个月前
神界诸多事 连载中
神界诸多事
将军背诗
围绕神界的几位神明而展开的故事,也有其展开的平行世界的故事
3.9万字8个月前
穿越撞见吸血鬼 连载中
穿越撞见吸血鬼
暴走小丸子
刚到新城市的安娜因为在图书馆翻看了一本关于吸血鬼的书籍,无意间穿越到了1460年的秋天,遇到了一位三百多岁的吸血鬼……被吓坏的她能成功逃离这......
2.5万字8个月前
Hp:东方女子又惊艳世人了 连载中
Hp:东方女子又惊艳世人了
z昭朝
身无彩凤双飞翼,心有灵犀一点通“别小看我,我可是会读心的!”“Well.那读心小姐怎么读不出-Myfeelingsforyou.”
4.1万字7个月前
世绘千章 连载中
世绘千章
查醉
大概就是科普一些东西吧,可能做oc会用到的。
1.8万字3个月前