数学联邦政治世界观
超小超大

幂级数环

【artin代数_第二版_11.2.2】 F 是域, p(t)=α₀+α₁t+α₂t²+. . . 是形式化的幂级数(formal power series)(不要求收敛),这些形式化的幂级数的集合记为 F[[t]] ,证明 F[[t]] 是环。

pf:证明F[[t]] 是环的方法可以参考多项式环 F[t] 的证明,形式化的幂级数和形式化的多项式区别在于形式化幂级数可以有无穷多项,这点对证明没有影响。

【artin代数_第二版_11.2.2】找出环 F[[t]] 的可逆元 (units)。

sol:环F[[t]] 的可逆元是所有 α₀ ≠ 0 的 p(t) ,这点不同于多项式环 F[t] (units 为 f(t)=α,α ≠ 0 )。形式化幂级数求逆元的过程就是“向后推”然后“抵消”,因为是无穷多项所以可以做到。

【artin代数_第二版_11.3.10】找出环 F[[t]] 的理想(ideal)。

sol: 假设l 是环 F[[t]] 的理想,每个 p(t) ∈ l 有最低次项,这个最低次数记为 mₚ ,例如 p(t)=3t+15t³ ,它的最低此项是 3t ,所以 mₚ=1 , l 中所有非零 p(t) 最低次数的最小值记为 m ,现在claim l=(tᵐ) 。

因为m 是所有非零 p(t) ∈ l 包含项的最低次,所以 p(t)=αₘtᵐ+αₘ₊₁tᵐ⁺¹+. . .=tᵐ(αₘ+αₘ₊₁t+. . .),括号中的部分是环 F[[t]] 中的元素,所以 l ⊂ (tᵐ) 。

假设q(t) ∈ l包含这个最低项 m 次项, 那么

q(t)=αₘtᵐ+αₘ₊₁tᵐ⁺¹+. . .=tᵐ(αₘ+αₘ₊₁t+. . .),αₘ ≠ 0,这里 αₘ+αₘ₊₁t+. . . 是 F[[t]] 的可逆元,所以 tᵐ=tᵐ(αₘ+αₘ₊₁t+. . . ) ((αₘ+αₘ₊₁t+. . .)的逆) ∈ l,所以(tᵐ) ⊂ l。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

三世奇缘——第一世:人间传奇 连载中
三世奇缘——第一世:人间传奇
Aot
她,第一世21世纪杀手NO.1;第二世人见人怕的女魔头;第三世的她又是什么?又会创造什么奇迹?他,神界十重天的太子,当他下凡历劫遇见她时会擦......
0.4万字3周前
梦的结局I 连载中
梦的结局I
紫苜花
“我以天下为棋,赌我胜它半子。”“你说,我们还有见面的机会吗?”“我好想你,我错了……”“师尊你何时归来。”“主上,你不在的日子,总归是无趣......
1.9万字2周前
春日樱花梦 连载中
春日樱花梦
春粉映蓝
《春日樱花梦》是一部描绘少年小枫在春日小镇上的一段奇妙旅行的小说。故事讲述了小枫在一个樱花盛开的午后,被淡紫色的樱花瓣和古老桥梁所吸引,踏上......
0.2万字1周前
今有包包在锅锅 连载中
今有包包在锅锅
苏晴舟
一个肉包子出生的一个女主幻化成人形来到人间寻找千年泪,是一个用尽一生爱你留下眼泪-
0.6万字1周前
雁归有时 连载中
雁归有时
生命高度
本书别名《没有明天》【虐文】【已完结】结合了某某些真实事件改编、以文字的方式呈现彭萧是在家暴家庭中长大,七岁那年,父亲残忍杀害母亲,22岁,......
2.6万字4天前
金花图万事书 连载中
金花图万事书
镀金鸢尾
愿望不都是美好的坚定的感情不都是充满对肉身及财富地位的渴望的人不都是为满足自己的灵魂而活的——当然,这要看你怎么判断这几句话了,是犹带猜疑的......
1.3万字4天前