数学联邦政治世界观
超小超大

类域论的【类】核心数学之一。

§4.2 代数数论的核心 · 99 ·

定义 4.17 称数域的理想类群的阶数为该数域的类数(class mumber). □

例4.18 令K=ℚ(√–26). 在§4.3 中我们将证明 K 的类数等于6.令α=(3.1+√–26),c=(2,√–26),则

α³=(1+√–26),c²=(2),

于是

ℤ/3ℤ ⨁ ℤ/2ℤ → CI(ℚ(√–26));

(m,n)↦(α 的类)ᵐ(c的类)ⁿ.

为了叙述定理 4.21,有必要先讲实素点和复素点的定义.

定义4.19设 K 为数域.

(1)K 的实素点是指由K到ℝ的一个域同态.

(2)K的复素点是指由K到ℂ的域同态σ,并使得 σ(K)⊂ ℝ 不成立. 我们约定这样的 σ

──

与其共轭 ˉσ:K → ℂ:x ↦ σ(x)为同一个复素点.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

荆棘本无意 连载中
荆棘本无意
是你喵总
这是荆棘家离开后的故事,莱洛拉受伤被两位老人家救了,却意外害死了这两位老人家。后来,她化名为温溪并认识了阿鹤,结伴与羽逾等人一起去寻找莱洛拉......
2.1万字10个月前
穷途(骗局3……0) 连载中
穷途(骗局3……0)
糊糊小白
欢迎各位来到“穷途”游戏,13位玩家齐聚一堂,遵循山羊的指引,携手闯关,只为取得塔顶的奖励,胜利者只有一位,谁会是最终赢家?注意:请不要相信......
7.4万字10个月前
海的生命 连载中
海的生命
卿蚩
时间
0.4万字9个月前
团宠礼神第一季 连载中
团宠礼神第一季
扶光2010
团宠小七的日常和小葫芦们新的冒险与敌人,及葫芦们腥风血雨的虐恋情仇(主要是我的梦)
3.4万字9个月前
觉醒后我和女鬼杀疯了 连载中
觉醒后我和女鬼杀疯了
片儿鱼
言清欢and言宜愉『实力爆表大佬鬼and智勇双全大美人』双女主,文笔差————————言宜愉是个初中生她原以为三年就这么过去了直到…学校操场......
1.5万字8个月前
斗破神域第三部无神论 连载中
斗破神域第三部无神论
韵笑笑
作品无特殊介绍
3.3万字4个月前