数学联邦政治世界观
超小超大

类域论的【类】核心数学之一。

§4.2 代数数论的核心 · 99 ·

定义 4.17 称数域的理想类群的阶数为该数域的类数(class mumber). □

例4.18 令K=ℚ(√–26). 在§4.3 中我们将证明 K 的类数等于6.令α=(3.1+√–26),c=(2,√–26),则

α³=(1+√–26),c²=(2),

于是

ℤ/3ℤ ⨁ ℤ/2ℤ → CI(ℚ(√–26));

(m,n)↦(α 的类)ᵐ(c的类)ⁿ.

为了叙述定理 4.21,有必要先讲实素点和复素点的定义.

定义4.19设 K 为数域.

(1)K 的实素点是指由K到ℝ的一个域同态.

(2)K的复素点是指由K到ℂ的域同态σ,并使得 σ(K)⊂ ℝ 不成立. 我们约定这样的 σ

──

与其共轭 ˉσ:K → ℂ:x ↦ σ(x)为同一个复素点.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

末世重生之组团求生 连载中
末世重生之组团求生
游客1583206612428
天灾+末世+囤物资+虐渣+cp+虐心+复仇+开局不圣母+误会重重。末世降临,这种天灾笼罩着整个蓝星地球。一,这是一场全球性的灾难,刚开始的时......
11.7万字11个月前
穿书后我在异世界当团宠帝姬 连载中
穿书后我在异世界当团宠帝姬
柳之之
神秘颜控少女沙小羊,某日在看完玛丽苏剧情的一本书后狠狠地吐槽了一番,结果证明……没事不要在背后说坏话Ծ‸Ծ,一觉醒来,她居然穿越到这本书里面......
8.1万字10个月前
无限:古堡之诗 连载中
无限:古堡之诗
槐x2
这是一个古怪的世界,所有人都被【系统】分配进各个无限流游戏关卡副本中【古堡之诗】通关率5%,危险率???但仍有倒霉蛋被分配在一起,6人一组作......
8.1万字9个月前
快穿:一统乙女游的白月光 连载中
快穿:一统乙女游的白月光
遥望星星的月
她是一统乙女游的白月光是所有人的月亮是所有人的心头肉是所有人的掌上明珠1:娱乐圈的白月光在组合内,她是当之无愧的顶流女爱豆,公司要求演戏,她......
10.2万字8个月前
Hp:东方女子又惊艳世人了 连载中
Hp:东方女子又惊艳世人了
z昭朝
身无彩凤双飞翼,心有灵犀一点通“别小看我,我可是会读心的!”“Well.那读心小姐怎么读不出-Myfeelingsforyou.”
4.1万字7个月前
余妄—春篇 连载中
余妄—春篇
木怀莹
《余妄》第一册,主角二人初遇,掀起了一场校园拉锯战
0.9万字3个月前