数学联邦政治世界观
超小超大

数学理论(五)

素数分布之道(原创彭秋年)

摘要:㈠创建能量参照法生成素数分布新论;㈡论各种奇素数组合的分布;㈢论偶数u的素数分解对的分布;㈣论m次函数中的素数分布;㈤论梅森素数的分布.

关键词:能量参照法、素数分布新论.

[本文节选㈠、㈣]

㈠、创建能量参照法生成素数分布新论.

首先陈述素数定理:如果以q表示自然数s以内的素数数量,则q=s/㏑s.

(s较小时,用㏑s-1.08代替㏑s计算更精确)

当s足够大时,显然满足:

(s/㏑s)/(1/㏑3+1/㏑4…+1/㏑s)→1.

如果集合X是集合N(N=全体自然数)的子集.

且令:s以内集合X中大于2的元素依次是x₁,x₂…xₙ;同时定义s以内集合X中元素的能量和为e=1/㏑x₁+1/㏑x₂…+1/㏑xₙ.

则有:s以内集合N中元素的能量和e、素数数量q都趋近或等于s/㏑s,即q=e=s/㏑s.

以集合X={x|x=3a+1,(a∈N)}为例展开论述.

且令:集合X、N中与pᵢ互素的元素的分布比例分别为yᵢ、zᵢ.

(i∈N,p₀=2,i>0时,pᵢ表示第i个奇素数)

则有:i=1时,y₁=1,z₁=2/3;

i≠1时,yᵢ=zᵢ=(pᵢ-1)/pᵢ;

集合X、N中与p₀p₁…pᵢ互素的元素的分布比例分别为y₀y₁…yᵢ、z₀z₁…zᵢ.

且令:rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:r₀=1;i>0时,rᵢ=1/(2/3)=3/2.

分析:s以内集合X中的元素相对于集合N中的元素,它们成为素数的能力强度其参照值是r=3/2;简述为集合X存在参照常数r=3/2.

且令:s以内集合X中元素的能量和为e.

则有:e=s/(3㏑s).

分析:s以内集合X中的素数数量q等于能量和e与参照常数r之积,即q=er=s/(2㏑s).

以此类推

且令:P={全体素数};

X={x|x=pa+y,(a∈N)}.

(p∈P,y=1,2…p-1)

则有:p、y确定时,s以内集合X中素数数量分布的计算公式是q=er=s/[(p-1)㏑s].

且令:P₀=P∩X.

则有:s以内集合P₀、P中元素数量分布之比为1/(p-1).

定义:使用能量和e与参照值r的概念对素数分布进行分析探讨的方法称为能量参照法.

素数定理与能量参照法结合为素数分布新论如下:

如果集合X是集合N(N=全体自然数)的子集;集合X中与pᵢ、p₀p₁…pᵢ互素的元素的分布比例分别为yᵢ、y₀y₁…yᵢ. (i∈N)

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

若存在n使得:i>n,所有的rᵢ都趋近或等于r;则称集合X存在参照常数r.

且令:s以内集合X中元素的能量和为e,素数元素的数量为q. (s足够大)

则有:q=er.

㈣、论m次函数中的素数分布.

①、论一次函数(等差数列)中的素数分布.

以集合X={x|x=10a+1,(a∈N)}为例展开论述.

且令:集合X中与pᵢ互素的元素的分布比例为yᵢ;zᵢ=(pᵢ-1)/pᵢ. (i∈N)

则有:10的素因数为p₀=2、p₂=5,对应y₀=y₂=1;i≠0、2时,yᵢ=zᵢ=(pᵢ-1)/pᵢ;

且令:rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:i>1时,rᵢ=1/[(1/2)(4/5)]=5/2.

即,集合X存在参照常数r=5/2.

简述:10以内有4个正整数(1,3,7,9)与10互素,对应集合X存在参照常数r=10/4=5/2.

s以内集合X中元素的能量和为e=s/(10㏑s).

因此,s以内集合X中素数数量分布的计算公式是q=er=s/(4㏑s).

(s较小时,用㏑s-1.08代替㏑s计算)

以此类推

且令:X={x|x=ma+n,(a∈N)};

m以内有u个正整数与m互素.

(m,n为互素的正整数,m>n)

则有:集合X存在参照常数r=m/u;s以内集合X中元素的能量和为e=s/(m㏑s).

因此,s以内集合X中素数数量分布的计算公式是q=er=s/(u㏑s).

(s较小时,用㏑s-1.08代替㏑s计算)

②、论二次函数中的素数分布.

以集合X={x|x=a²+1,(a∈N)}为例展开论述.

且令:集合X中与pᵢ互素的元素的分布比例为yᵢ. (i∈N)

则有:y₀=1/2;pᵢ=4c+1时,yᵢ=(pᵢ-2)/pᵢ;pᵢ≠2、4c+1时,yᵢ=1. (c∈N)

又,4以内共有2个正整数(1,3)与4互素.

因此,s以内有1/2的pᵢ=4c+1.

且令:zᵢ=(pᵢ-1)/pᵢ;rᵢ=(y₀y₁…yᵢ)/(z₀z₁…zᵢ).

则有:rᵢ→1.37…

即,集合X存在参照常数r=1.37.

s以内集合X中元素的能量和为e=√s/㏑s.

因此,s以内集合X中素数数量分布的计算公式是q=er=1.37√s/㏑s.

(s较小时,用㏑s-1.08代替㏑s计算)

以此类推

且令:A={x|x=a²+n,(a∈N)};

B={x|x=a²+a+n,(a∈N)};

C={x|x=(a²+a)/2+n,(a∈N)}.(n∈Z)

则有:n确定时,s以内集合A、B、C中素数数量分布的计算公式都是q=er=rₙk/㏑s.

[k表示s以内集合X(X=A,B,C)中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算]

集合A的参照常数rₙ的计算方法如下:

1、n=-b²(b∈N)时,集合A的表达式能够进行因式分解,rₙ=0.

2、n≠-b²(b∈N)时,令|4n|以内存在2u个正整数与|4n|互素,集合A的正元素中包含的与|4n|互素的素因数除以|4n|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|4n|时,令tᵢ=1;

当pᵢ=|4n|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|4n|且pᵢ≠|4n|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|4n|c+bᵥ;

i足够大时,rₙ=t₀t₁…tᵢ=常数.

(i∈N,c∈N,v=1,2…u)

另外,如果m=nb²(b∈N+);

b不存在与|4n|互素的奇素因数,则rₘ=rₙ;

b存在与|4n|互素的奇素因数d₁,d₂…dₓ,

当dᵢ=|4n|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|4n|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

例如:

n=7时,|4n|=28,28以内存在12个正整数与28互素,集合A的正元素中包含的与28互素的素因数除以28所得互异的余数(有且仅有6个)组成序列

B={b₁,b₂…b₆}={1,9,11,15,23,25};

28的素因数为p₀=2、p₃=7,令t₀=t₃=1;

当pᵢ=28c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ≠2、7、28c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1).

(i、c∈N,v=1,2…6)

又,s以内有1/2的pᵢ=28c+bᵥ;

经计算,i>167时,r₇=t₀t₁…tᵢ=1.96…

因此,集合A={x|x=a²+7,(a∈N)}的参照常数为r₇=1.96.

经粗略计算,r₁=r₄=1.37,r₂=r₈=0.71,

r₃=1.11,r₅=0.52,r₆=0.71,r₇=1.96,

r₀=r₋₁=r₋₄=0,r₋₂=r₋₈=1.89,r₋₃=1.38,

r₋₅=1.78,r₋₆=1.04,r₋₇=0.75.

(连续足够多个rₙ的均值为1)

集合B的参照常数rₙ的计算方法如下:

1、n为偶数时,集合B中的元素均为偶数,rₙ=0.

2、n为奇数时,令|4n-1|以内存在2u个正整数与|4n-1|互素,集合B的正元素中包含的与|4n-1|互素的素因数除以|4n-1|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|4n-1|时,令tᵢ=1;

当pᵢ=|4n-1|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|4n-1|且pᵢ≠|4n-1|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|4n-1|c+bᵥ;

i足够大时,rₙ=2t₁t₂…tᵢ=常数.

(i∈N+,c∈N,v=1,2…u)

另外,如果|4m-1|=|4n-1|b²(b为正奇数);

b不存在与|4n-1|互素的奇素因数,则rₘ=rₙ;

b存在与|4n-1|互素的奇素因数d₁,d₂…dₓ,

当dᵢ=|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|4n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

经粗略计算,r₁=1.56,r₀=r₋₂=r₂=0,

r₃=1.01,r₋₁=3.43,r₋₃=1.61.

(连续足够多个rₙ的均值为1)

集合C的参照常数rₙ的计算方法如下:

1、n=-(b²+b)/2(b∈N)时,集合C的表达式偶数项与奇数项能够分开进行因式分解,rₙ=0.

2、n≠-(b²+b)/2(b∈N)时,令|8n-1|以内存在2u个正整数与|8n-1|互素,集合C的正元素中包含的与|8n-1|互素的素因数除以|8n-1|所得互异的余数(有且仅有u个)组成序列B={b₁,b₂…bᵤ};

当pᵢ整除|8n-1|时,令tᵢ=1;

当pᵢ=|8n-1|c+bᵥ时,令tᵢ=(pᵢ-2)/(pᵢ-1);

当pᵢ不能整除|8n-1|且pᵢ≠|8n-1|c+bᵥ时,令tᵢ=pᵢ/(pᵢ-1);

s以内有1/2的pᵢ=|8n-1|c+bᵥ;

i足够大时,rₙ=t₁t₂…tᵢ=常数.

(i∈N+,c∈N,v=1,2…u)

另外,如果|8m-1|=|8n-1|b²(b∈N+);

b不存在与|8n-1|互素的奇素因数,则rₘ=rₙ;

b存在与|8n-1|互素的奇素因数d₁,d₂…dₓ,当dᵢ=|8n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/(dᵢ-2),

当dᵢ≠|8n-1|c+bᵥ时,令kᵢ=(dᵢ-1)/dᵢ,

则rₘ=rₙk₁k₂…kₓ. (i=1,2…x;c、bᵥ同上)

经粗略计算,r₁=1.98,r₀=r₋₁=0,

r₋₂=2.35,r₂=1.24.

(连续足够多个rₙ的均值为1)

综合而论

s以内集合X={x|x=k₂a²+k₁a+n,(a∈N}中素数数量分布的计算公式是q=er=rₙk/㏑s. (k₂∈N+,k₁∈Z,n∈Z,k表示s以内集合X中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算)

集合X的参照常数rₙ的计算方法如下:

1、集合X的表达式能够进行因式分解或者所有元素都被某个素数整除时(例如k₁、k₂为奇数,n为偶数时,所有元素都被2整除),rₙ=0.

2、当集合X不符合第1条所述;k₁为偶数时,令A={x|x=a²+k₂n-k₁²/4,(a∈N)};

k₁、k₂、n均为奇数时,令B={x|x=a²+a+k₂n-(k₁²-1)/4,(a∈N)};

k₁为奇数、k₂为偶数时,令C={x|x=(a²+a)/2+k₂n/2-(k₁²-1)/8,(a∈N)};

当k₂=2ᵐ(m∈N)时,令b=1;当k₂存在奇素因数d₁,d₂…dₓ,dᵢ(i=1,2…x)整除k₁时,令bᵢ=dᵢ/(dᵢ-1),dᵢ与k₁互素时,令bᵢ=(dᵢ-1)/(dᵢ-2),令b=b₁b₂…bₓ;

则rₙ等于集合X对应的集合(A,B,C三者之一)的参照常数乘以b.

(k₁,k₂不变,连续足够多个rₙ的均值为1)

③、论m(m∈N+)次函数中的素数分布.

且令:X={x|x=kₘaᵐ+kₘ₋₁aᵐ⁻¹…+k₁a+n,(a∈N)}. (m、kₘ∈N+,n、k₁…kₘ₋₁∈Z)

则有:s以内集合X中素数数量分布的计算公式是q=er=rₙk/㏑s.

(k表示s以内集合X中正元素的数量,s较小时,用㏑s-1.08代替㏑s计算)

集合X的参照常数rₙ的计算方法如下:

1、集合X的表达式能够进行因式分解或者所有元素都被某个素数整除时,rₙ=0;否则,按2、3条计算,rₙ>0,集合X中素数无穷多.

2、集合X中的正元素除以pᵢ所得余数呈现周期性分布规律,周期长度为pᵢ;每个素数都对应一个余数周期,这些周期内最多有m个0,最少则无0,平均为一个0;令pᵢ对应的余数周期中有dᵢ个元素与pᵢ互素;令tᵢ=dᵢ/(pᵢ-1);i足够大时,rₙ=t₀t₁…tᵢ=常数. (i∈N)

3、第2条是关于集合X的rₙ值的直接计算法,前面计算表达式为二次函数的集合X的rₙ值用的是间接计算法,关于计算表达式为二次以上函数的集合X的rₙ值的间接计算法尚待探讨.

(m,k₁…kₘ不变,连续足够多个rₙ的均值为1)

另外,当集合X的表达式中某些项的系数不为整数时,若集合X中的正元素分布符合上述第2条,则集合X的rₙ值计算方法同上.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

我靠养鱼,日常变美 连载中
我靠养鱼,日常变美
寒时温
快穿流,不喜勿入(日更2000~4000)一句话简介:我靠养鱼,日常变美!颜末小姐的鱼塘壮大史。第一处鱼塘:网恋选我,我超甜第二处鱼塘:恋综......
56.4万字2周前
清冷钓系美人每天都在修罗场 连载中
清冷钓系美人每天都在修罗场
栖行止
谢笺屿长发窄腰,拥有一双纯净澈透的冰蓝色凤眸,浑身散发的清冷圣洁气息,让他稳坐s市首校磬华大学高岭之花的宝座美人清净自持,端方矜贵,走到哪里......
86.9万字2周前
小甜文双男主合集 连载中
小甜文双男主合集
速成鸡
双男主短篇小合集
6.5万字2周前
星灵幻影 连载中
星灵幻影
晨曦_51327356096082374
一个女孩的神奇之旅
0.7万字4天前
八点之后 连载中
八点之后
猹狸猫
古铜巷里的三兄妹,看似商人,实则在治愈着伤心人,每到晚上八点之后,一行人便踏上了夜行之路,每每一件物品物归原主,一件奇异事件便在悄然发生。(......
1.9万字4天前
白梓萱与王静 连载中
白梓萱与王静
白梓萱54341348
“东关小学就像那五只小羊一样,快乐,幸福,美丽”“只有露西,并不像只小羊”“东关小学又是一个美丽团结的羊村”“善良团结”“有时候村里也可能混......
0.2万字3天前