数学联邦政治世界观
超小超大

逻辑学

为审慎起见,答案自带数学证明:

1)设x为任意个体变元,P(x)与Q(x)分别为定义x的命题,则当P(x)与Q(x)不等价时,有

(∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

即概念的定义不等价必导致推理结论不一致,因而矛盾律必须被遵守.

证明(李,2023):设H为表征变元为重言式的谓词,则由蕴含的传递性及充分条件与必要条件的关系,有

(∀x)P(x)⇎Q(x)

⇒ (∀x)¬H(P(x)↔Q(x))

⇒ (∀x)Q(x)↛P(x)

⇒ (∀x)¬(P(x)↔Q(x))

⇒ (∀x)(Q(x)⊬P(x))

⇒ (∀x)(Q(x)⊬P(x))→Q(x) ⊬ S(x)

⇒ (∀x)P(x)├ S(x)→Q(x) ⊬ S(x)

Q.E.D.

2)设S为表征变元不服从矛盾律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违矛盾律则世无假话或世无真话.

证明(李, 2023):设Z为表征变元满足必有一假的二元谓词,Ç为表征变元同真或同假的二元谓词,则

(∀x)S(P(x), ¬P(x))

⇒ (∀x)¬Z(P(x), ¬P(x))

⇒ (∀x)Ç(P(x), ¬P(x))

⇒ (∀x)S(P(x), ¬P(x))→T(P(x))∨F(P(x)

Q.E.D.

3) 设S⁺为表征变元不服从排中律的二元谓词,T为同真谓词,F为同假谓词,则

(∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x)

上式表征,若有违排中律则世无假话或世无真话.

证明(李,2019):设Z⁺为表征变元满足必有一真的二元谓词,Ç⁺为表征变元同真或同假的二元谓词,则

(∀x)S⁺(P(x), ¬P(x))

⇒ (∀x)¬Z⁺(P(x), ¬P(x))

⇒ (∀x)Ç⁺(P(x), ¬P(x))

⇒ (∀x)S⁺(P(x), ¬P(x))→T(P(x))∨F(P(x))

Q.E.D.

在逻辑问题上,不建议以哲学固有的半散文-半杂文语言描述或解释逻辑规则,否则极易造成逻辑上的疏漏。千百年来,哲学之所以一错再错,就是因为哲学热衷于以洋洋洒洒的半散文-半杂文语言在本需高度审慎的论域比划来比划去的处理涉逻辑问题,其结果势必大概率比划出逻辑上的纰漏而全然不觉。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

梦断南宫 连载中
梦断南宫
梦境之旅_
生命只有一次,又或许平行世界有无数次。一诺的妈妈会在另个世界依旧陪伴一诺吗?
13.4万字2周前
疯批实验体 连载中
疯批实验体
鸢源儿
疯批病娇六人✘单纯张
3.3万字1周前
CH:假 连载中
CH:假
我推法法
世界真真假假假假真真,真亦是假假亦是真,真假如何可要看君是如何看待
2.4万字1周前
每个世界都在发生不同的事情 连载中
每个世界都在发生不同的事情
风中凌乱的
宝宝们,欢迎观看,希望宝子们喜欢,大家一起交流,可以告诉我,你想看的类型,我来写。
5.5万字5天前
锦年金缘 连载中
锦年金缘
浅和苏
很多年后,众人才知道,那年他们的遇见,早已注定……
0.6万字5天前
愿祈世安 连载中
愿祈世安
糖糖就是俺
—“黑暗后的黎明名为希望.”—“是绝望亦或是希望?”......唯祈愿世安,奈何世不遂她所愿.
0.5万字5天前