数学联邦政治世界观
超小超大

伪证

许多悖论都可以视为不加限制地使用逻辑, 得到对矛盾的伪证.

1. 小试牛刀: 说谎者悖论

"这句话为假." 这句话的存在本身就能导出矛盾.

• 如果这句话是真的, 那么根据它的内容, 它是假的.

• 如果这句话是假的, 那么它必须是真的.

因此这句话既真又假, 矛盾.

2. 强说谎者悖论

对说谎者悖论的一个自然的补丁是认为自然语言中有些句子是无意义的. "我在说谎"这句话就是无意义的. 但这个补丁只是把自然语言的真值扩展到了三值: 真, 假, 无意义. 它完全没有解决这个悖论. 考虑 "这句话为假或者无意义".

• 如果这句话为真, 那么它为假或无意义.

• 如果这句话为假或无意义, 那么它为真.

因此这句话既是真的, 也或者为假, 或者无意义, 矛盾.

3. Curry 悖论

Curry 悖论似乎允许我们证明任何命题. 下面我们试着证明荒谬的0=1.

考虑这句话: "如果这句话是真的, 那么0=1." 记之为 k, 于是 k 所说的就是:如果 k 为真, 那么 0=1.

1. 如果 k 为真, 那么平凡地, k 为真.

2. 在 1 中展开 k 的定义得到, 如果 k 为真, 那么如果 k 为真, 那么 0=1.

3. 综合 1, 2 得到:如果 k 为真, 那么 0=1.

4. 但 3 就是 k! 所以 k 是真的.

5. 综合 3, 4 得到:0=1.

4. Tarski 真不可定义性

The best part of this unified scheme is that it shows that there are really no paradoxes. There are limitations. Paradoxes are ways of showing that if you permit one to violate a limitation, then you will get an inconsistent systems.[1]

将上面的悖论形式化到一阶算术, 就能得到著名的 Tarski 定理. 固定一个算术公式到自然数的Gödel 编码 φ(x)↦⌜φ(x)⌝.

Theorem. (Tarski) 集合 {n∈ℕ│n } 在算术语言中是不可定义的.

Proof. 假设它被公式 T(x) 定义. 固定一个函数 D:ℕ → ℕ, 使得对任意公式 φ(x),D(⌜φ(x)⌝)=⌜φ(⌜φ(x)⌝)⌝. 显然存在这样的递归函数, 因此它是可表示的.

定义公式G(x) 为 ¬T(D(x)), 则公式 G(⌜G(x)⌝) 便是"我在说谎":G(⌜(G(x)⌝) ⇔ ¬T(D(⌜G(x)⌝)) ⇔ ¬G(⌜G(x)⌝)矛盾. □

哲学上, 这一切悖论说的都是语言不能谈论自身的真值, 不然就会导致悖论. 读者可以在 Yanofsky[1]的文章里看到更多有趣的例子.

参考:1. A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points https://arxiv.org/abs/math/0305282

2. A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points https://arxiv.org/abs/math/0305282

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

一个誓言走一世 连载中
一个誓言走一世
情终须缘
复合√回家√蝶眸殉情黑化……(反正不虐,很甜)一笑倾国,再笑倾城。
10.1万字6个月前
地缚少年:第八大灵异现象 连载中
地缚少年:第八大灵异现象
悦音幻
这里是ALL女主文,主花子君和原创女主,想看的就进来吧,比较甜,花宁粉勿进。
1.6万字2个月前
被男人抱着不断升级中 连载中
被男人抱着不断升级中
色气值拉满
宋春樱在姐姐的针对,和母亲漠视,任由宋春樱活在姐姐宋秋月不停针对霸凌下,破釜沉舟出国深造,成功的取得了阶段性成就,站稳了脚跟,有了一份可观的......
14.7万字2个月前
震惊!我从小养到大的妖竟然…… 连载中
震惊!我从小养到大的妖竟然……
无唤
原本今安是个雪狐妖,在桃花山上生活,在第一次下山的途中,在拍卖场拍下了一个狼妖,今安当时一眼就看出了这个狼妖资质很好加上长得也算清秀实在是太......
0.9万字3周前
天圆地方,太阳之女 连载中
天圆地方,太阳之女
烧麦寒柒
天圆地方,女尊世界。太阳之女,涅槃重生……
1.0万字2周前
跨越千万次的人形之爱 连载中
跨越千万次的人形之爱
许墨迹墨迹
森林中的小鹿千万次幻化成少女,与少年阿宇邂逅、相恋。然而,变身带来的虚弱、小镇的误解、黑暗力量的觊觎接踵而至。面对命运的捉弄,他们能否凭借爱......
11.9万字1周前