数学联邦政治世界观
超小超大

柯西留数定理

定理1(柯西留数定理):

f(z)在周线或复周线C所围的区域D内,除α₁,α₂,. . .,αₙ 外解析,在闭域ˉD=D+C上除α₁,α₂,. . .,αₙ 外连续,则fᴄf(z)dz=2πi∑ⁿₖ₌₁Resf(z)

ᴢ=αₖ

留数理论是柯西积分定理的进一步发展,如果函数f(x)在点a是解析的,周线C全在点a的某邻域内,根据前面讲的柯西积分定理 《如何证明复变函数论中的柯西积分定理》可知f(z)在周线C上的积分为0。这时的周线C必须是一个单连通区域内的周线,那么当a点是一个孤立奇点,这时包含周线C的区域不是一个单连通区域(有一个奇点a),往往f(z)在周线C上的积分不为0。

定义1(留数):

设函数f(z)以有限点a为孤立奇点,即f(z)在点a的某去心邻域 0<|z-a|<R内解析,则积分

1

── ∫Γf(z)dz,其中

2πi

Γ:|z – α|=ρ,0<ρ<R

这个积分叫作f(z)在点a的留数,记为

Resf(z)

z=α

《洛朗级数与泰勒级数有什么关系?》里,洛朗级数的系数

1 f(ζ)

cₙ=── ∫Γ ──── dζ(n=0,±1,. . .)

2πi (ζ – α)ⁿ⁺¹

令n=-1,则

1

c₋₁=── ∫Γf(ζ)dζ,所以

2πi

Resf(z)=c₋₁

z=α

定理1(柯西留数定理):

f(z)在周线或复周线C所围的区域D内,除α₁,α₂,. . .,αₙ 外解析,

在闭域ˉD=D+C 上除α₁,α₂,. . .,αₙ 外连续,则

∫ᴄf(z)dz=2πi∑Resf(z)

ₖ₌₁ z=αₖ

证明:

画圆周|Γₖ:|z – αₖ|=ρₖ(k=1,2,. . .,n)使圆周和内部都包含于D,且彼此不相交,应用复周线柯西定理得

∫ᴄf(z)dz=∑∫Γₖf(z)dz,由定义得

ₖ₌₁

∫ᴄf(z)dz=2πi∑Resf(z)

ₖ₌₁ z=αₖ

现在来关注在无穷远点的留数。

定义2(无穷远点的留数):

设∞ 为函数f(z)的一个孤立奇点,即f(z)在去心邻域

N – ∞:0 ≤ r<|z|<+∞ 内解析,则

1

── ∫Γ⁻f(z)dz(Γ:|z|=ρ>r)

2πi

为f(z)在点∞ 的留数,记 Resf(z) 。

z=∞

注意这里的积分路径是负方向也就是顺时针方向。有的读者会疑问为何在无穷远点的留数积分路径为负方向,原因在于负方向的圆周绕着无穷远点则是正向了,因为无穷远点是在圆周之外。下面的定理把无穷远点的留数包含进来了。

定理2:

如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点),设为a1,a2,...,an,∞,则f(z)在各点的留数总和为0。

证明:

以原点为圆心作圆周Γ 使除∞外的奇点都包含于 Γ 内部,则根据留数定理,

∫Γf(z)dz=2πi∑Resf(z),于是

ₖ₌₁ z=αₖ

ₙ 1

∑Resf(z)+── ∫Γf(z)dz=0,即

ₖ₌₁ z=αₖ 2πi

∑Resf(z)+Resf(z)=0

ₖ₌₁ z=αₖ z=∞

某些实定积分的计算用留数定理会简洁很多,这再一次印证了曾有数学家说的一句话:实数之间真理的最短路径经过复数。下面演示某些三角函数类的积分可以用留数定理计算。

例:∫₀²π R(cosθ,sinθ)dθ

令z=eⁱθ,则

z+z⁻¹ z – z⁻¹

cosθ=───,sinθ=───,

2 2i

dz

dθ=──,

iz

θ 从0到 2π 时,z从1正向沿着圆周一圈,于是

∫₀²π R(cosθ,sinθ)dθ=∫|z| → ↓

z+z⁻¹ z – z⁻¹ dz

R(───,───) ──,

2 2i iz

只需要计算圆周内奇点的留数就能求出积分,对于原函数不易求的积分,这样的方法大大降低了积分求解的难度。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

一本看哭人的小说 连载中
一本看哭人的小说
啊,天才!
----回忆里永远的End永恒----
7.0万字5个月前
为苍生为民国 连载中
为苍生为民国
林允_
听闻民国爱情十有九悲郝家小姐郝敏留洋归来结识谢家少爷谢景淮为了共同的革命事业而奋斗留洋归来小姐×世族少爷“为苍生永不悔”“世淮,已然释怀”
0.1万字3个月前
重生之顶尖修真者 连载中
重生之顶尖修真者
一夜长雨
重生女x狼狗男甄秋重生到修真世界,在这个过程中与陌桦相遇,二人从互相试探到真心相待,甄秋一边在修真世界努力升级,一边应对各种阴谋诡计,最终成......
1.3万字2个月前
异世旅行进行时 连载中
异世旅行进行时
破晓之泪
(封面用的是繁体字)全员恶人!×3有绿茶!×3主人物:(名字见书本)❤️在一场实验中,由于科研人员的失误,导致新研发的新型病毒扩散。动物们开......
0.7万字1个月前
异世界转生重生 连载中
异世界转生重生
黑土还不阴
怎么说呢,男主角转生变成少女
1.6万字3周前
1000个民间故事 连载中
1000个民间故事
无敌蛙王
每一个故事。或奇幻、或温情、或警醒。那些被岁月尘封的传说。带着生活的烟火与奇思。跨越时空。讲述人间万象。
18.6万字4天前