数学联邦政治世界观
超小超大

超级莱茵哈特基数与伯克利club(第二版本)

超级莱茵哈特基数

超级莱因哈特基数对于任一序数α,存在一

j:V→V with j(K)>α并具有临界点K,可以称为0=1是因为足够大的大基数公理会导致不一致性,从而使该系统下所有命题为真。

伯克利club

基数κ是伯克利基数,如果对于任何带κ的传递集k∈M和任何序数α<κ,都会有一个初等嵌入j:M<M和crit j<k,如果真的存在伯克利基数,那么就会有对力迫扩张绝对,它使最小的伯克利基数有共尾性ω,通过对κ的施加一定的条件,似乎可以增强Berkeley性质,如果κ是Berkeley和α,α∈M且M有传递,那么对于任意α<k,都有一个j:M<M和α<crit j<k和crit j(a)=a,对于任意一个可传递的M∋k都存在j:M≺M与crit j<K,基数是Berkeley,且仅当对于任何传递集M∋κ存在j:M≺M和α<crit j<k,因此δ≥k,δ也是伯克利,最小的伯克利基数也被称为δ_α,称κ为club-伯克利,如果κ是正则的,并且对于所有club→C⊆κ和所有带κ的传递集M∈M;

有j∈ε(M)和crit (j)∈C,称κ为limit club伯克利,它是一个club伯克利基数/limit伯克利基数,如果K为最小的伯克利,则y<k。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字7个月前
雅家:六大天王 连载中
雅家:六大天王
77小X
原创男主角女主角
4.0万字7个月前
她们真的是救世主嘛? 连载中
她们真的是救世主嘛?
汽see
在这个鬼怪与人类的世界里,六个女孩通过解开一个又一个的灵异事件,去探寻星清学院的真相,她们会发生什么样的事呢…不过,她们真的是救世主吗?无c......
13.5万字5个月前
岁岁闲 连载中
岁岁闲
慕迟遇
生活琐碎的片段
14.9万字2个月前
寒月诚羿 连载中
寒月诚羿
Kk神探书怪
值此中秋佳节,与君相伴把酒言欢,食月饼谈古今,皆是共享此轮明月,年年月月物是人非,岁岁天天月阴圆缺,看我独家秘制,神射嬴羿和艳冠九州的霜凌月......
1.0万字2周前
快穿之她是心尖痣 连载中
快穿之她是心尖痣
许青山
我有一卷很长的故事,讲的全是痴憎怨,爱别离……世界一:女扮男装的女相成了朝堂万人迷
3.1万字1周前