数学联邦政治世界观
超小超大

莱因哈特基数与伯克利基数(第二版本)

莱因哈特基数Reinhardt基数

是非平凡基本嵌入的临界点j : V→V的V进入自身。

这个定义明确地引用了适当的类j.在标准ZF中,类的形式为{x|Φ(x,a)}对于某些集合a和公式Φ.

但是在 Suzuki中表明没有这样的类是基本嵌入j :V→V.

还有其他已知不一致的Reinhardt基数公式。

一是新增功能符号j用ZF的语言,连同公理说明j是的基本嵌入V,以及所有涉及的公式的分离和收集公理j.

另一种是使用类理论,如NBG或KM,它们承认在上述意义上不需要定义的类。

又或是有一个公理主张存在被称为Reinhardt基数的基数。

这个基数公理在普通集合论的公理系统ZFC中不能很好地表达,例如,需要考虑可以把真正的类作为理论对象来处理的ZFC的扩展,但是基数κ为reinhardd在某个集合论的universe对自己的初等映射j中,存在κ为j(κ)≠κ的最小顺序数的情况。

这个基数的概念引入后不久,这样的基数的存在与集合论的扩展相矛盾

(即, ZFC的这样的扩张和主张Reinhardt基数存在的公理相结合的体系是矛盾的,或者ZFC的这样的扩张可以作为定理证明Reinhardt基数的不存在)。

为了能够记述在以下叙述的Reinhardt基数的定义中j的存在主张,需要那样的扩展。

对于某语言l,从L-结构m到L-结构n的映射f是初等的( elementary )是指,对于所有m的要素的组a0,...,an 1和所有谓语逻辑中的L-逻辑式( x0,...,xn1),m = ( elementary )

伯克利基数

Berkeley 基数

是Zermelo-Fraenkel集合论模型中的基数K,具有以下性质:

对于包含k和α<k的每个传递集M,存在M的非平凡初等嵌入,其中a<临界点<K.

Berkeley基数是比Reinhardt基数严格更强的基数公理,这意味着它们与选择公理不兼容。

作为伯克利基数的弱化是,对于Vk上的每个二元关系R,都有(VK,R)的非平凡基本嵌入到自身中。

这意味着我们有基本的j1,j2, j3...

j1:(Vk,∈)→(VK,∈),

j2:(VK,∈,j1)→(Vk,∈,j1),

j3:(Vk,∈,j1,j2)→(VK,∈,j1,j2)等等。

这可以持续任意有限次,并且在模型具有依赖性选择的范围内无限。

因此,似乎可以通过断言更多依赖性选择来简单地加强这一概念。

对于每个序数入,存在一个ZF+Berkeley基数的传递模型,该模型在入序列下是封闭的,是不需要定义的类。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

笑花的开挂人生! 连载中
笑花的开挂人生!
求放过呆萌花
笑花和系统还有pws的搞笑故事,笑花和系统在等你来!
0.4万字7个月前
玄界:生命与自然双灵能,在玄幻星际杀疯了! 连载中
玄界:生命与自然双灵能,在玄幻星际杀疯了!
俺是两点半老师哩
『科技与灵能共存世界观,讲述的是女主两点半在玄幻世界经历各种各样有趣的事,结识许多的朋友,大女主,可以嗑cp,没有男朋友设定√,但是有很多男......
5.6万字6个月前
梦之诡见 连载中
梦之诡见
牛毛
我叫夏昭,我猝死了,我以为我会直接死掉,如果我不是因为连续熬了七天夜干物流而猝死结果来到了另一个世界,我差点就信了。
1.7万字6个月前
书外的你我是天作之合 连载中
书外的你我是天作之合
璟秋竹
明月几时有?把酒问青天。你是暖阳,是我生命里不可缺失的光,你是早晨的太阳,明亮又耀眼。所以,谢谢你永远选择我。苏淮雪,不论书里书外。(双女主......
0.6万字6个月前
星光星院 连载中
星光星院
熙安湘
在一个遥远的玄幻世界中,人类世界与魔法世界相互依存,维持着微妙的平衡。这个人类世界,有一个被称为“星光学院”的神秘地方。这里汇聚了来自各地拥......
6.6万字3周前
大佬飞升失败后穿越虐渣 连载中
大佬飞升失败后穿越虐渣
榛果果
(不建议带脑子观看)程芷衡被未婚夫算计,在渡劫时失败。就在她以为自己死了的时候,一个自称复仇系统的东西绑定了她,并把她带到一个陌生的世界,在......
1.3万字6天前