数学联邦政治世界观
超小超大

(额外篇章)强紧基数的等阶定义

强紧基数κ 的定义:对于任意 λ≥κ , Pκ(λ)=[λ]<κ上存在精良测度(fine measure)。

定理:强紧基数与如下两个命题等价:“对于任意集合X , X 上 κ 完全的滤子 F 可扩张为 κ 完全的超滤”、“任意语言Ըκ,ω 和命题集 Γ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足”。不难看出强紧基数是对超滤子定理和紧致性定理的推广。

引理1:如果任意集合 X 上的 κ 完全的滤子 F 可扩张为 κ 完全的超滤,那么 κ 是强紧基数。

证明:令λ≥κ,令

Aα={x∈[λ]<κ:α ∈ x} ,令

B={∩ξ<β Aξ:β<κ} ,最后令

F={x ⊆ [λ]<κ:∃g ∈ B(x ⊇ g)},不难证明 F 是 κ 完全的超滤子,根据假设令 ∪⊃F 是 κ 完全的超滤,显然 ∪ 是精良测度。⊣

引理2 :如果 κ 是强紧基数,那么对任意语言Ըκ,ω 和命题集 Γ ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足。

证明:用x,g,z 表示 Γ 的基数<κ 的子集,令 𝕬ₓ 表示 x 的一个模型。类似于Ըω,ω,我们也可以证明 Ըκ,ω 的Los定理:令

𝕬=∏ₓ 𝕬ₓ/≡∪,那么

𝕬 ⊨ ψ([f₁],· · ·,[fᵢ])当且仅当

{x ∈ Pκ(Γ):ψ([f₁](x),· · ·,[fᵢ](x))}∈∪,其中 ∪ 是 Pκ(Γ) 是精良测度。由于 ∪ 是精良测度,任选语句 φ∈Γ ,都有 Bφ={x∈Pκ(Γ):φ∈x} ∈∪,因此 𝕬 ⊨ Γ 。⊣

引理3 :”任意语言 Ըκ,ω 和命题集 Γ ,如果 Γ 的任意基数<κ 的子集 Γ' 可满足,那么 Γ 可满足”蕴含“对于任意集合 Ⅹ , Ⅹ 上 κ 完全的滤子 F 可扩张为 κ 完全的超滤”。

证明:向集合论语言中加入常元∪,F 以及 X 的全体子集,我们用 cʏ,Y ⊆ X 表示 Ⅹ 的子集常元。定义如下语句集 Σ: c∅ ∉ ∪ ∧ cₓ ∈∪ ; cʏ ∈ F → cʏ ∈∪;∧ξ<η cʏξ ∈∪ → c∩ξ<η Yξ ∈∪,其中 η<κ ; cʏ ∈∪∧cz ⊇ cʏ → cz ∈ ∪ ; cʏ ∈∪↔ cʏ-ʏ ∉ ∪。上述的每一个语句的长度都<κ且没有出现无穷个变元,因此符合Ըκ,ω 的定义。下面证明 Σ 的<κ的子集都可满足:任选 Σ' ⊂ Σ 且 |Σ'|<κ ,由于 Σ' 出现的常元数<κ ,不妨假设 Σ' 对子公式封闭。不难证明,存在一个赋值 l 使得所有出现在 Σ' 的形如 cʏ ∈∪ 的公式,都有 l (cʏ) ∈ F,根据选择公理,我们让 W ⊃ F 为一个超滤, W 就是 Σ' 的模型,因此 Σ 的<κ 的子集都可满足,那么 Σ 的模型 M 满足 M ≅ X ,因此可以诱导出一个X上的 κ 完全的超滤∪ ⊃ F,定理成立。⊣

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

我在泰娱哦! 连载中
我在泰娱哦!
Dy蒂伍艾
近年来,我迷上了泰娱,所以有这样的幻想也不为过。
39.8万字1个月前
快穿之芙蓉帐暖 连载中
快穿之芙蓉帐暖
玉樱樱
(快穿+系统+虐渣+爽文+演戏+大美人+渣女+男主碎片)渣女梨依儿快穿到各个小世界围绕在各个大佬周围。完成任务后就不甩他们了,主搞自己的事业......
3.2万字2个月前
疯子又来啦! 连载中
疯子又来啦!
星之曰月
修仙小说,随便磕回魂肉魄轮回尽,亦是相回白雪纷。每世抗命残伤奄,血发污衣浸红身。自曾梦影现故因,终是相遇还恩人。二世帮协将死人,长貌如吾一相......
2.3万字2个月前
雁归有时 连载中
雁归有时
生命高度
本书别名《没有明天》【虐文】【已完结】结合了某某些真实事件改编、以文字的方式呈现彭萧是在家暴家庭中长大,七岁那年,父亲残忍杀害母亲,22岁,......
9.3万字1个月前
蚊子 连载中
蚊子
巟无
oc一号世界观而已
0.5万字2个月前
什么时候才能当主角 连载中
什么时候才能当主角
到处随逛
穿越剧情,星越祈穿越到各个剧情中,填各种的坑,填完之后还要带队友做业务,呵呵,不过越来越爽是怎么回事?
0.9万字1个月前